Error Estimates of hp Spectral Element Methods in Nonlinear Optimal Control Problem

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiuxiu Lin, Yanping Chen, Yunqing Huang
{"title":"Error Estimates of hp Spectral Element Methods in Nonlinear Optimal Control Problem","authors":"Xiuxiu Lin, Yanping Chen, Yunqing Huang","doi":"10.1007/s00332-023-09991-1","DOIUrl":null,"url":null,"abstract":"<p>The main purpose of this paper is to discuss <i>hp</i> spectral element method for optimal control problem governed by a nonlinear elliptic equation with <span>\\(L^2\\)</span>-norm constraint for control variable. We then set up its weak formulation and <i>hp</i> spectral element approximation scheme. A priori error estimates of <i>hp</i> spectral element approximation based on some suitable projection operators are proved carefully. Using some properties of projection operators, a posteriori error estimates for both the state and the control approximation under some reasonable assumptions are established rigorously. Such estimates are useful tools, which can be used to construct reliable adaptive spectral element methods for optimal control problems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-09991-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The main purpose of this paper is to discuss hp spectral element method for optimal control problem governed by a nonlinear elliptic equation with \(L^2\)-norm constraint for control variable. We then set up its weak formulation and hp spectral element approximation scheme. A priori error estimates of hp spectral element approximation based on some suitable projection operators are proved carefully. Using some properties of projection operators, a posteriori error estimates for both the state and the control approximation under some reasonable assumptions are established rigorously. Such estimates are useful tools, which can be used to construct reliable adaptive spectral element methods for optimal control problems.

非线性最优控制问题中hp谱元方法的误差估计
本文的主要目的是讨论控制变量为\(L^2\) -范数约束的非线性椭圆方程的最优控制问题的hp谱元方法。然后建立了它的弱公式和hp谱元近似格式。仔细地证明了基于一些合适的投影算子的hp谱元逼近的先验误差估计。利用投影算子的一些性质,在一些合理的假设条件下,严格地建立了状态和控制逼近的后验误差估计。这种估计是有用的工具,可用于构建可靠的自适应谱元方法来解决最优控制问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信