The Extended Large Deviation Principle for the Trajectories of a Compound Renewal Process

A. A. Mogul’skiĭ
{"title":"The Extended Large Deviation Principle for the Trajectories of a Compound Renewal Process","authors":"A. A. Mogul’skiĭ","doi":"10.1134/s1055134422010047","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study a homogeneous compound renewal process (c.r.p.) <span>\\(Z(t) \\)</span>. It is assumed that the elements of the sequence\nthat rules the process satisfy Cramér’s moment condition <span>\\([{\\bf C}_0] \\)</span>. We consider the family of processes </p><span>$$ z_T(t):=\\frac 1xZ(tT),\\enspace\n\\enspace 0\\le t\\le 1,$$</span><p> where <span>\\(x=x_T\\sim T \\)</span> as <span>\\(T\\to \\infty \\)</span>.\nConditions are proposed under which the extended large deviation principle holds\nfor the trajectories <span>\\( z_T\\)</span> in the space <span>\\((\\mathbb {V},\\rho B) \\)</span> of functions with bounded variation, endowed with\nBorovkov’s metric. If the trajectories of the process <span>\\(Z(t) \\)</span> are monotone with probability 1 then, under\nthe same condition, we prove the classical trajectory large deviation principle.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":"61 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1055134422010047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a homogeneous compound renewal process (c.r.p.) \(Z(t) \). It is assumed that the elements of the sequence that rules the process satisfy Cramér’s moment condition \([{\bf C}_0] \). We consider the family of processes

$$ z_T(t):=\frac 1xZ(tT),\enspace \enspace 0\le t\le 1,$$

where \(x=x_T\sim T \) as \(T\to \infty \). Conditions are proposed under which the extended large deviation principle holds for the trajectories \( z_T\) in the space \((\mathbb {V},\rho B) \) of functions with bounded variation, endowed with Borovkov’s metric. If the trajectories of the process \(Z(t) \) are monotone with probability 1 then, under the same condition, we prove the classical trajectory large deviation principle.

复合更新过程轨迹的扩展大偏差原理
摘要研究了一种均相化合物更新过程(c.r.p) \(Z(t) \)。假设控制过程的序列元素满足cramsamr矩条件\([{\bf C}_0] \)。我们考虑了过程族$$ z_T(t):=\frac 1xZ(tT),\enspace\enspace 0\le t\le 1,$$,其中\(x=x_T\sim T \)为\(T\to \infty \),给出了具有borovkov度规的有界变分函数空间\((\mathbb {V},\rho B) \)中轨迹\( z_T\)的扩展大偏差原理成立的条件。如果过程\(Z(t) \)的轨迹是概率为1的单调,那么在相同的条件下,我们证明了经典轨迹大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信