Monotonicity Reasoning in the Age of Neural Foundation Models

IF 0.7 3区 数学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zeming Chen, Qiyue Gao
{"title":"Monotonicity Reasoning in the Age of Neural Foundation Models","authors":"Zeming Chen, Qiyue Gao","doi":"10.1007/s10849-023-09411-3","DOIUrl":null,"url":null,"abstract":"<p>The recent advance of large language models (LLMs) demonstrates that these large-scale foundation models achieve remarkable capabilities across a wide range of language tasks and domains. The success of the statistical learning approach challenges our understanding of traditional symbolic and logical reasoning. The first part of this paper summarizes several works concerning the progress of monotonicity reasoning through neural networks and deep learning. We demonstrate different methods for solving the monotonicity reasoning task using neural and symbolic approaches and also discuss their advantages and limitations. The second part of this paper focuses on analyzing the capability of large-scale general-purpose language models to reason with monotonicity.</p>","PeriodicalId":48732,"journal":{"name":"Journal of Logic Language and Information","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logic Language and Information","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10849-023-09411-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The recent advance of large language models (LLMs) demonstrates that these large-scale foundation models achieve remarkable capabilities across a wide range of language tasks and domains. The success of the statistical learning approach challenges our understanding of traditional symbolic and logical reasoning. The first part of this paper summarizes several works concerning the progress of monotonicity reasoning through neural networks and deep learning. We demonstrate different methods for solving the monotonicity reasoning task using neural and symbolic approaches and also discuss their advantages and limitations. The second part of this paper focuses on analyzing the capability of large-scale general-purpose language models to reason with monotonicity.

Abstract Image

神经基础模型时代的单调性推理
大型语言模型(llm)的最新进展表明,这些大型基础模型在广泛的语言任务和领域中取得了显著的能力。统计学习方法的成功挑战了我们对传统符号和逻辑推理的理解。本文第一部分概述了利用神经网络和深度学习进行单调性推理的研究进展。我们展示了用神经和符号方法解决单调性推理任务的不同方法,并讨论了它们的优点和局限性。第二部分着重分析了大规模通用语言模型的单调推理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Logic Language and Information
Journal of Logic Language and Information COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEL-LOGIC
CiteScore
1.70
自引率
12.50%
发文量
40
期刊介绍: The scope of the journal is the logical and computational foundations of natural, formal, and programming languages, as well as the different forms of human and mechanized inference. It covers the logical, linguistic, and information-theoretic parts of the cognitive sciences. Examples of main subareas are Intentional Logics including Dynamic Logic; Nonmonotonic Logic and Belief Revision; Constructive Logics; Complexity Issues in Logic and Linguistics; Theoretical Problems of Logic Programming and Resolution; Categorial Grammar and Type Theory; Generalized Quantification; Information-Oriented Theories of Semantic Structure like Situation Semantics, Discourse Representation Theory, and Dynamic Semantics; Connectionist Models of Logical and Linguistic Structures. The emphasis is on the theoretical aspects of these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信