{"title":"Design of a Highly Efficient Subwavelength Antireflective Structure for Solar Cells","authors":"Lin Chen, Zhao Huang","doi":"10.1155/2022/9963336","DOIUrl":null,"url":null,"abstract":"An efficient optical antireflective (AR) structure plays a vital role in high-performance thin-film solar cells. Here, we design a surface relief AR structure consisting of a two-dimensional (2D) array of a subwavelength ring and pillar-shaped feature, capable of suppressing optical reflection over a wide spectral window of the solar spectrum. Our simulations show that the weighted average reflectance of the subwavelength AR structure is as low as 4.2% in the 400–1100 nm spectral range in the normal incidence condition and almost 10-fold reduction compared with a bare silicon surface. When placed on the front side of a simple Si thin-film photovoltaic solar cell, this subwavelength AR structure leads to an improved light absorption with simulated results showing an increase of 53% short-circuit current compared to a flat solar cell. Besides, our simulations show that this AR structure could, in principle, perform well against reasonable fabrication errors.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":"129 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/9963336","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
An efficient optical antireflective (AR) structure plays a vital role in high-performance thin-film solar cells. Here, we design a surface relief AR structure consisting of a two-dimensional (2D) array of a subwavelength ring and pillar-shaped feature, capable of suppressing optical reflection over a wide spectral window of the solar spectrum. Our simulations show that the weighted average reflectance of the subwavelength AR structure is as low as 4.2% in the 400–1100 nm spectral range in the normal incidence condition and almost 10-fold reduction compared with a bare silicon surface. When placed on the front side of a simple Si thin-film photovoltaic solar cell, this subwavelength AR structure leads to an improved light absorption with simulated results showing an increase of 53% short-circuit current compared to a flat solar cell. Besides, our simulations show that this AR structure could, in principle, perform well against reasonable fabrication errors.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.