Design of a Highly Efficient Subwavelength Antireflective Structure for Solar Cells

IF 1.8 4区 物理与天体物理 Q3 OPTICS
Lin Chen, Zhao Huang
{"title":"Design of a Highly Efficient Subwavelength Antireflective Structure for Solar Cells","authors":"Lin Chen, Zhao Huang","doi":"10.1155/2022/9963336","DOIUrl":null,"url":null,"abstract":"An efficient optical antireflective (AR) structure plays a vital role in high-performance thin-film solar cells. Here, we design a surface relief AR structure consisting of a two-dimensional (2D) array of a subwavelength ring and pillar-shaped feature, capable of suppressing optical reflection over a wide spectral window of the solar spectrum. Our simulations show that the weighted average reflectance of the subwavelength AR structure is as low as 4.2% in the 400–1100 nm spectral range in the normal incidence condition and almost 10-fold reduction compared with a bare silicon surface. When placed on the front side of a simple Si thin-film photovoltaic solar cell, this subwavelength AR structure leads to an improved light absorption with simulated results showing an increase of 53% short-circuit current compared to a flat solar cell. Besides, our simulations show that this AR structure could, in principle, perform well against reasonable fabrication errors.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":"129 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/9963336","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient optical antireflective (AR) structure plays a vital role in high-performance thin-film solar cells. Here, we design a surface relief AR structure consisting of a two-dimensional (2D) array of a subwavelength ring and pillar-shaped feature, capable of suppressing optical reflection over a wide spectral window of the solar spectrum. Our simulations show that the weighted average reflectance of the subwavelength AR structure is as low as 4.2% in the 400–1100 nm spectral range in the normal incidence condition and almost 10-fold reduction compared with a bare silicon surface. When placed on the front side of a simple Si thin-film photovoltaic solar cell, this subwavelength AR structure leads to an improved light absorption with simulated results showing an increase of 53% short-circuit current compared to a flat solar cell. Besides, our simulations show that this AR structure could, in principle, perform well against reasonable fabrication errors.
太阳能电池高效亚波长抗反射结构的设计
高效的光学抗反射结构在高性能薄膜太阳能电池中起着至关重要的作用。在这里,我们设计了一个表面浮雕AR结构,由亚波长环形和柱状特征的二维阵列组成,能够在太阳光谱的宽光谱窗口内抑制光学反射。模拟结果表明,在正常入射条件下,亚波长AR结构在400-1100 nm光谱范围内的加权平均反射率低至4.2%,与裸硅表面相比降低了近10倍。当放置在简单的硅薄膜光伏太阳能电池的正面时,这种亚波长AR结构导致光吸收的改善,模拟结果显示,与平板太阳能电池相比,短路电流增加了53%。此外,我们的仿真表明,这种增强现实结构原则上可以在合理的制造误差下表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Optics
International Journal of Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
3.40
自引率
5.90%
发文量
28
审稿时长
13 weeks
期刊介绍: International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信