Heat Kernel Estimates for Stable-driven SDEs with Distributional Drift

IF 1 3区 数学 Q1 MATHEMATICS
Mathis Fitoussi
{"title":"Heat Kernel Estimates for Stable-driven SDEs with Distributional Drift","authors":"Mathis Fitoussi","doi":"10.1007/s11118-023-10115-3","DOIUrl":null,"url":null,"abstract":"<p>We consider the <i>formal</i> SDE</p><p><span>\\(\\textrm{d} X_t = b(t,X_t)\\textrm{d} t + \\textrm{d} Z_t, \\qquad X_0 = x \\in \\mathbb {R}^d, (\\text {E})\\)</span></p><p>where <span>\\(b\\in L^r ([0,T],\\mathbb {B}_{p,q}^\\beta (\\mathbb {R}^d,\\mathbb {R}^d))\\)</span> is a time-inhomogeneous Besov drift and <span>\\(Z_t\\)</span> is a symmetric <i>d</i>-dimensional <span>\\(\\alpha \\)</span>-stable process, <span>\\(\\alpha \\in (1,2)\\)</span>, whose spectral measure is absolutely continuous w.r.t. the Lebesgue measure on the sphere. Above, <span>\\(L^r\\)</span> and <span>\\(\\mathbb {B}_{p,q}^\\beta \\)</span> respectively denote Lebesgue and Besov spaces. We show that, when <span>\\(\\beta &gt; \\frac{1-\\alpha + \\frac{\\alpha }{r} + \\frac{d}{p}}{2}\\)</span>, the martingale solution associated with the formal generator of (E) admits a density which enjoys two-sided heat kernel bounds as well as gradient estimates w.r.t. the backward variable. Our proof relies on a suitable mollification of the singular drift aimed at using a Duhamel-type expansion. We then use a normalization method combined with Besov space properties (thermic characterization, duality and product rules) to derive estimates.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-023-10115-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the formal SDE

\(\textrm{d} X_t = b(t,X_t)\textrm{d} t + \textrm{d} Z_t, \qquad X_0 = x \in \mathbb {R}^d, (\text {E})\)

where \(b\in L^r ([0,T],\mathbb {B}_{p,q}^\beta (\mathbb {R}^d,\mathbb {R}^d))\) is a time-inhomogeneous Besov drift and \(Z_t\) is a symmetric d-dimensional \(\alpha \)-stable process, \(\alpha \in (1,2)\), whose spectral measure is absolutely continuous w.r.t. the Lebesgue measure on the sphere. Above, \(L^r\) and \(\mathbb {B}_{p,q}^\beta \) respectively denote Lebesgue and Besov spaces. We show that, when \(\beta > \frac{1-\alpha + \frac{\alpha }{r} + \frac{d}{p}}{2}\), the martingale solution associated with the formal generator of (E) admits a density which enjoys two-sided heat kernel bounds as well as gradient estimates w.r.t. the backward variable. Our proof relies on a suitable mollification of the singular drift aimed at using a Duhamel-type expansion. We then use a normalization method combined with Besov space properties (thermic characterization, duality and product rules) to derive estimates.

分布漂移稳定驱动SDEs的热核估计
我们考虑形式SDE \(\textrm{d} X_t = b(t,X_t)\textrm{d} t + \textrm{d} Z_t, \qquad X_0 = x \in \mathbb {R}^d, (\text {E})\),其中\(b\in L^r ([0,T],\mathbb {B}_{p,q}^\beta (\mathbb {R}^d,\mathbb {R}^d))\)是一个时间非均匀的Besov漂移,\(Z_t\)是一个对称的d维\(\alpha \)稳定过程,\(\alpha \in (1,2)\),其谱测度相对于球上的Lebesgue测度是绝对连续的。其中\(L^r\)和\(\mathbb {B}_{p,q}^\beta \)分别表示Lebesgue和Besov空间。我们表明,当\(\beta > \frac{1-\alpha + \frac{\alpha }{r} + \frac{d}{p}}{2}\)时,与(E)的形式生成器相关的鞅解允许密度具有双面热核边界以及梯度估计w.r.t.后向变量。我们的证明依赖于用duhamel型展开对奇异漂移进行适当的缓和。然后,我们使用一种结合Besov空间性质(热表征、对偶性和乘积规则)的归一化方法来推导估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信