{"title":"A participatory sensing framework to classify road surface quality","authors":"Davidson E. Nunes, Vinicius F. S. Mota","doi":"10.1186/s13174-019-0111-1","DOIUrl":null,"url":null,"abstract":"Participatory sensing networks rely on gathering personal data from mobile devices to infer global knowledge. Participatory sensing has been used for real-time traffic monitoring, where the global traffic conditions are based on information provided by individual devices. However, fewer initiatives address asphalt quality conditions, which is an essential aspect of the route decision process. This article proposes Streetcheck, a framework to classify road surface quality through participatory sensing. Streetcheck gathers mobile devices’ sensors such as Global Positioning System (GPS) and accelerometer, as well as users’ ratings on road surface quality. A classification system aggregates the data, filters them, and extracts a set of features as input for supervised learning algorithms. Twenty volunteers carried out tests using Streetcheck on 1,200 km of urban roads of Minas Gerais (Brazil). Streetcheck reached up to 90.64% of accuracy on classifying road surface quality.","PeriodicalId":46467,"journal":{"name":"Journal of Internet Services and Applications","volume":"60 1","pages":"1-16"},"PeriodicalIF":2.4000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13174-019-0111-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 12
Abstract
Participatory sensing networks rely on gathering personal data from mobile devices to infer global knowledge. Participatory sensing has been used for real-time traffic monitoring, where the global traffic conditions are based on information provided by individual devices. However, fewer initiatives address asphalt quality conditions, which is an essential aspect of the route decision process. This article proposes Streetcheck, a framework to classify road surface quality through participatory sensing. Streetcheck gathers mobile devices’ sensors such as Global Positioning System (GPS) and accelerometer, as well as users’ ratings on road surface quality. A classification system aggregates the data, filters them, and extracts a set of features as input for supervised learning algorithms. Twenty volunteers carried out tests using Streetcheck on 1,200 km of urban roads of Minas Gerais (Brazil). Streetcheck reached up to 90.64% of accuracy on classifying road surface quality.