The second nonlinear mixed Lie triple derivations on standard operator algebras

Pub Date : 2023-11-19 DOI:10.1515/gmj-2023-2086
Nadeem ur Rehman, Junaid Nisar, Bilal Ahmad Wani
{"title":"The second nonlinear mixed Lie triple derivations on standard operator algebras","authors":"Nadeem ur Rehman, Junaid Nisar, Bilal Ahmad Wani","doi":"10.1515/gmj-2023-2086","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2086_eq_0304.png\" /> <jats:tex-math>{\\mathcal{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a standard operator algebra containing the identity operator <jats:italic>I</jats:italic> on an infinite dimensional complex Hilbert space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℋ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2086_eq_0308.png\" /> <jats:tex-math>{\\mathcal{H}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> which is closed under adjoint operation. Suppose that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ϕ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi mathvariant=\"script\">𝒜</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2086_eq_0329.png\" /> <jats:tex-math>{\\phi:\\mathcal{A}\\to\\mathcal{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the second nonlinear mixed Lie triple derivation. Then ϕ is an additive <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∗</m:mo> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2023-2086_eq_0290.png\" /> <jats:tex-math>{\\ast}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-derivation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 𝒜 {\mathcal{A}} be a standard operator algebra containing the identity operator I on an infinite dimensional complex Hilbert space {\mathcal{H}} which is closed under adjoint operation. Suppose that ϕ : 𝒜 𝒜 {\phi:\mathcal{A}\to\mathcal{A}} is the second nonlinear mixed Lie triple derivation. Then ϕ is an additive {\ast} -derivation.
分享
查看原文
标准算子代数上的第二类非线性混合李三元导数
设{\mathcal{A}}是包含无穷维复希尔伯特空间H {\mathcal{H}}上的单位算子I的标准算子代数,该空间在伴随运算下闭合。设φ: φ→φ {\phi:\mathcal{A}\到\mathcal{A}}是第二个非线性混合李氏三重导数。则φ是一个可加的* (\ \ast)导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信