Episodic magmatism at the Permian/Triassic crisis boundary and its linkage to underlying source rocks: constraints from conodont-based high-resolution geochemical proxies in marine carbonate successions, South China
{"title":"Episodic magmatism at the Permian/Triassic crisis boundary and its linkage to underlying source rocks: constraints from conodont-based high-resolution geochemical proxies in marine carbonate successions, South China","authors":"Chao Liu, Jing Ding, Wenzhao Sun, Xueying Luan, Shasha Sun, Yong Yang, Mengsen Feng, Tanen Jiang, Jiayu Li","doi":"10.1007/s00531-023-02357-8","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Frequent magmatism was a major event causing the mass extinction across the Permian/Triassic Boundary. In the current study, we determined magmatism characteristics from the Pingdingshan section at the Permian/Triassic Boundary using conodont-based geochemical proxies at a high-resolution scale (~ 50 kyr). Integrated trace elements (Mn, Sr, Rb, and Th) and stable/radioactive isotopes (δ<sup>18</sup>O, δ<sup>13</sup>C, and <sup>87</sup>Sr/<sup>86</sup>Sr) revealed that conodonts provided an ideal proxy for chemostratigraphic signatures of ancient seawater. The conodont-based, high-resolution <sup>87</sup>Sr/<sup>86</sup>Sr isotopes from the studied interval (250.50–252.00 Ma) displayed three decreasing cycles upwardly against a long-term increasing background, reflecting three episodes of magmatism. As a contrast, the conodont-based, high-resolution δ<sup>18</sup>O isotopes from this interval exhibited no episodic pattern, indicating that the δ<sup>18</sup>O isotopes of conodonts were limitedly influenced by marine magmatism. The high-resolution δ<sup>13</sup>C values of micrites displayed a pattern consistent with the trend of long-term background, revealing that the δ<sup>13</sup>C signatures of episodic magmatism were not inherited by micrites. The magmatism associated with the EPME event exerted great influences upon the Chihsian source rocks by introducing massive heat through hydrothermal fluids and causing pervasive oceanic anoxia.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":13845,"journal":{"name":"International Journal of Earth Sciences","volume":"9 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00531-023-02357-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Frequent magmatism was a major event causing the mass extinction across the Permian/Triassic Boundary. In the current study, we determined magmatism characteristics from the Pingdingshan section at the Permian/Triassic Boundary using conodont-based geochemical proxies at a high-resolution scale (~ 50 kyr). Integrated trace elements (Mn, Sr, Rb, and Th) and stable/radioactive isotopes (δ18O, δ13C, and 87Sr/86Sr) revealed that conodonts provided an ideal proxy for chemostratigraphic signatures of ancient seawater. The conodont-based, high-resolution 87Sr/86Sr isotopes from the studied interval (250.50–252.00 Ma) displayed three decreasing cycles upwardly against a long-term increasing background, reflecting three episodes of magmatism. As a contrast, the conodont-based, high-resolution δ18O isotopes from this interval exhibited no episodic pattern, indicating that the δ18O isotopes of conodonts were limitedly influenced by marine magmatism. The high-resolution δ13C values of micrites displayed a pattern consistent with the trend of long-term background, revealing that the δ13C signatures of episodic magmatism were not inherited by micrites. The magmatism associated with the EPME event exerted great influences upon the Chihsian source rocks by introducing massive heat through hydrothermal fluids and causing pervasive oceanic anoxia.
期刊介绍:
The International Journal of Earth Sciences publishes process-oriented original and review papers on the history of the earth, including
- Dynamics of the lithosphere
- Tectonics and volcanology
- Sedimentology
- Evolution of life
- Marine and continental ecosystems
- Global dynamics of physicochemical cycles
- Mineral deposits and hydrocarbons
- Surface processes.