Xiaocheng Wang, Guiyun Fan, Rong Ding, Haiming Jin, Wentian Hao, Mingyuan Tao
{"title":"Water Salinity Sensing with UAV-Mounted IR-UWB Radar","authors":"Xiaocheng Wang, Guiyun Fan, Rong Ding, Haiming Jin, Wentian Hao, Mingyuan Tao","doi":"10.1145/3633515","DOIUrl":null,"url":null,"abstract":"<p>The quality of surface water is closely related to human’s production and livelihood. Water salinity is one of the key indicators of water quality assessment. Recently, there has been an increased salinization problem of surface water in many regions of the world, making it necessary to timely monitor the salinity of surface water. Water salinity sensing could be challenging when it comes to surface water with complicated basin and tributaries, where existing methods fail to satisfy both efficiency and accuracy requirements. To address this problem, we propose a novel water salinity sensing system USalt, which leverages the high mobility of UAV and the contactless sensing ability of IR-UWB radar, and realizes fast and accurate water salinity sensing for surface water. Specifically, we design novel methods to eliminate the contamination in raw received radar signals and extract salinity-related features from radar signals. Furthermore, we adopt a neural network model ssNet to precisely estimate water salinity using the extracted features. To efficiently adapt ssNet to different environments, we customize meta learning and design a meta-learning framework mssNet. Extensive real-world experiments carried out by our UAV-based system illustrate that USalt can accurately sense the salinity of water with an MAE of 0.39g/100mL.</p>","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"27 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3633515","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The quality of surface water is closely related to human’s production and livelihood. Water salinity is one of the key indicators of water quality assessment. Recently, there has been an increased salinization problem of surface water in many regions of the world, making it necessary to timely monitor the salinity of surface water. Water salinity sensing could be challenging when it comes to surface water with complicated basin and tributaries, where existing methods fail to satisfy both efficiency and accuracy requirements. To address this problem, we propose a novel water salinity sensing system USalt, which leverages the high mobility of UAV and the contactless sensing ability of IR-UWB radar, and realizes fast and accurate water salinity sensing for surface water. Specifically, we design novel methods to eliminate the contamination in raw received radar signals and extract salinity-related features from radar signals. Furthermore, we adopt a neural network model ssNet to precisely estimate water salinity using the extracted features. To efficiently adapt ssNet to different environments, we customize meta learning and design a meta-learning framework mssNet. Extensive real-world experiments carried out by our UAV-based system illustrate that USalt can accurately sense the salinity of water with an MAE of 0.39g/100mL.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.