Analytic Langlands correspondence for $$PGL_2$$ P G L 2 on $${\mathbb {P}}^1$$ P 1 with parabolic structures over local fields

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pavel Etingof, Edward Frenkel, David Kazhdan
{"title":"Analytic Langlands correspondence for $$PGL_2$$ P G L 2 on $${\\mathbb {P}}^1$$ P 1 with parabolic structures over local fields","authors":"Pavel Etingof, Edward Frenkel, David Kazhdan","doi":"10.1007/s00039-022-00603-w","DOIUrl":null,"url":null,"abstract":"<p>We continue to develop the analytic Langlands program for curves over local fields initiated in our earlier papers, following a suggestion of Langlands and a work of Teschner. Namely, we study the Hecke operators which we introduced in those papers in the case of a projective line with parabolic structures at finitely many points for the group <span>\\(PGL_2\\)</span>. We establish most of our conjectures in this case.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-022-00603-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We continue to develop the analytic Langlands program for curves over local fields initiated in our earlier papers, following a suggestion of Langlands and a work of Teschner. Namely, we study the Hecke operators which we introduced in those papers in the case of a projective line with parabolic structures at finitely many points for the group \(PGL_2\). We establish most of our conjectures in this case.

局部场上具有抛物结构的$${\mathbb {P}}^1$$ p1上$$PGL_2$$ P G L 2的解析朗兰对应
根据朗兰兹的建议和特施纳的工作,我们继续发展我们早期论文中提出的局部场曲线的解析朗兰兹程序。也就是说,我们研究了我们在那些论文中引入的Hecke算子,对于群\(PGL_2\)在有限多点处具有抛物结构的射影线。我们在这个案例中建立了大部分的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信