Analytic Langlands correspondence for $$PGL_2$$ P G L 2 on $${\mathbb {P}}^1$$ P 1 with parabolic structures over local fields

IF 2.4 1区 数学 Q1 MATHEMATICS
Pavel Etingof, Edward Frenkel, David Kazhdan
{"title":"Analytic Langlands correspondence for $$PGL_2$$ P G L 2 on $${\\mathbb {P}}^1$$ P 1 with parabolic structures over local fields","authors":"Pavel Etingof, Edward Frenkel, David Kazhdan","doi":"10.1007/s00039-022-00603-w","DOIUrl":null,"url":null,"abstract":"<p>We continue to develop the analytic Langlands program for curves over local fields initiated in our earlier papers, following a suggestion of Langlands and a work of Teschner. Namely, we study the Hecke operators which we introduced in those papers in the case of a projective line with parabolic structures at finitely many points for the group <span>\\(PGL_2\\)</span>. We establish most of our conjectures in this case.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"21 3 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-022-00603-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We continue to develop the analytic Langlands program for curves over local fields initiated in our earlier papers, following a suggestion of Langlands and a work of Teschner. Namely, we study the Hecke operators which we introduced in those papers in the case of a projective line with parabolic structures at finitely many points for the group \(PGL_2\). We establish most of our conjectures in this case.

局部场上具有抛物结构的$${\mathbb {P}}^1$$ p1上$$PGL_2$$ P G L 2的解析朗兰对应
根据朗兰兹的建议和特施纳的工作,我们继续发展我们早期论文中提出的局部场曲线的解析朗兰兹程序。也就是说,我们研究了我们在那些论文中引入的Hecke算子,对于群\(PGL_2\)在有限多点处具有抛物结构的射影线。我们在这个案例中建立了大部分的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信