A random cover of a compact hyperbolic surface has relative spectral gap $$\frac{3}{16}-\varepsilon $$ 3 16 - ε

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michael Magee, Frédéric Naud, Doron Puder
{"title":"A random cover of a compact hyperbolic surface has relative spectral gap $$\\frac{3}{16}-\\varepsilon $$ 3 16 - ε","authors":"Michael Magee, Frédéric Naud, Doron Puder","doi":"10.1007/s00039-022-00602-x","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a compact connected hyperbolic surface, that is, a closed connected orientable smooth surface with a Riemannian metric of constant curvature <span>\\(-1\\)</span>. For each <span>\\(n\\in {\\mathbf {N}}\\)</span>, let <span>\\(X_{n}\\)</span> be a random degree-<i>n</i> cover of <i>X</i> sampled uniformly from all degree-<i>n</i> Riemannian covering spaces of <i>X</i>. An eigenvalue of <i>X</i> or <span>\\(X_{n}\\)</span> is an eigenvalue of the associated Laplacian operator <span>\\(\\Delta _{X}\\)</span> or <span>\\(\\Delta _{X_{n}}\\)</span>. We say that an eigenvalue of <span>\\(X_{n}\\)</span> is <i>new </i>if it occurs with greater multiplicity than in <i>X</i>. We prove that for any <span>\\(\\varepsilon &gt;0\\)</span>, with probability tending to 1 as <span>\\(n\\rightarrow \\infty \\)</span>, there are no new eigenvalues of <span>\\(X_{n}\\)</span> below <span>\\(\\frac{3}{16}-\\varepsilon \\)</span>. We conjecture that the same result holds with <span>\\(\\frac{3}{16}\\)</span> replaced by <span>\\(\\frac{1}{4}\\)</span>.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-022-00602-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 10

Abstract

Let X be a compact connected hyperbolic surface, that is, a closed connected orientable smooth surface with a Riemannian metric of constant curvature \(-1\). For each \(n\in {\mathbf {N}}\), let \(X_{n}\) be a random degree-n cover of X sampled uniformly from all degree-n Riemannian covering spaces of X. An eigenvalue of X or \(X_{n}\) is an eigenvalue of the associated Laplacian operator \(\Delta _{X}\) or \(\Delta _{X_{n}}\). We say that an eigenvalue of \(X_{n}\) is new if it occurs with greater multiplicity than in X. We prove that for any \(\varepsilon >0\), with probability tending to 1 as \(n\rightarrow \infty \), there are no new eigenvalues of \(X_{n}\) below \(\frac{3}{16}-\varepsilon \). We conjecture that the same result holds with \(\frac{3}{16}\) replaced by \(\frac{1}{4}\).

Abstract Image

紧致双曲曲面的随机覆盖层具有相对谱隙$$\frac{3}{16}-\varepsilon $$ 3 16 - ε
设X为紧连双曲曲面,即具有常曲率黎曼度规\(-1\)的紧连可定向光滑曲面。对于每个\(n\in {\mathbf {N}}\),设\(X_{n}\)是X的随机n次覆盖,从X的所有n次黎曼覆盖空间中均匀抽样。X或\(X_{n}\)的特征值是相关拉普拉斯算子\(\Delta _{X}\)或\(\Delta _{X_{n}}\)的特征值。如果一个特征值\(X_{n}\)出现的多重性大于x,我们就说它是新的。我们证明对于任何\(\varepsilon >0\),当概率趋向于1为\(n\rightarrow \infty \)时,在\(\frac{3}{16}-\varepsilon \)以下不存在新的特征值\(X_{n}\)。我们推测,用\(\frac{1}{4}\)代替\(\frac{3}{16}\)也会得到同样的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信