On a conjecture of Braverman-Kazhdan

IF 3.5 1区 数学 Q1 MATHEMATICS
Tsao-Hsien Chen
{"title":"On a conjecture of Braverman-Kazhdan","authors":"Tsao-Hsien Chen","doi":"10.1090/jams/992","DOIUrl":null,"url":null,"abstract":"Abstract:In this article we prove a conjecture of Braverman-Kazhdan in [Geom. Funct. Anal. Special Volume (2000), pp. 237–278] on acyclicity of $\\rho$-Bessel sheaves on reductive groups. We do so by proving a vanishing conjecture proposed in our previous work [A vanishing conjecture: the GLn case, arXiv:1902.11190]. As a corollary, we obtain a geometric construction of the non-linear Fourier kernel for a finite reductive group as conjectured by Braverman and Kazhdan. The proof uses the theory of Mellin transforms, Drinfeld center of Harish-Chandra bimodules, and a construction of a class of character sheaves in mixed-characteristic. <hr align=\"left\" noshade=\"noshade\" width=\"200\"/>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"47 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/992","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract:In this article we prove a conjecture of Braverman-Kazhdan in [Geom. Funct. Anal. Special Volume (2000), pp. 237–278] on acyclicity of $\rho$-Bessel sheaves on reductive groups. We do so by proving a vanishing conjecture proposed in our previous work [A vanishing conjecture: the GLn case, arXiv:1902.11190]. As a corollary, we obtain a geometric construction of the non-linear Fourier kernel for a finite reductive group as conjectured by Braverman and Kazhdan. The proof uses the theory of Mellin transforms, Drinfeld center of Harish-Chandra bimodules, and a construction of a class of character sheaves in mixed-characteristic.
关于Braverman-Kazhdan的猜想
摘要:本文证明了Braverman-Kazhdan的一个猜想。功能。分析的。[专题卷(2000),pp. 237-278]关于$\rho$-贝塞尔轴在还原基上的不周期性。我们通过证明在我们之前的工作中提出的一个消失猜想来做到这一点[a消失猜想:GLn情况,arXiv:1902.11190]。作为推论,我们得到了由Braverman和Kazhdan猜想的有限约化群的非线性傅里叶核的几何构造。利用Mellin变换理论、Harish-Chandra双模的Drinfeld中心以及混合特征中一类特征束的构造进行了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信