Normal Properties of Numbers in Terms of their Representation by the Perron Series

Pub Date : 2023-11-28 DOI:10.1007/s11253-023-02246-y
Mykola Moroz
{"title":"Normal Properties of Numbers in Terms of their Representation by the Perron Series","authors":"Mykola Moroz","doi":"10.1007/s11253-023-02246-y","DOIUrl":null,"url":null,"abstract":"<p>We study the representation of real numbers by Perron series (<i>P</i>-representation) given by\n</p><span>$$\\left(\\left.0;1\\right]\\ni x=\\sum_{n=0}^{\\infty }\\frac{{r}_{0}{r}_{1}\\dots {r}_{n}}{\\left({p}_{1}-1\\right){p}_{1}\\dots \\left({p}_{n}-1\\right){p}_{n}{p}_{n+1}}={\\Delta }_{{p}_{1}{p}_{2}\\dots }^{P}\\right.,$$</span><p>where <i>r</i><sub><i>n</i></sub>, <i>p</i><sub><i>n</i></sub> ∈ ℕ, <i>p</i><sub><i>n</i>+1</sub> ≥ <i>r</i><sub><i>n</i></sub> + 1, and its transcoding (<span>\\(\\overline{P }\\)</span>-representation)\n</p><span>$${x=\\Delta }_{{g}_{1}{g}_{2}\\dots }^{\\overline{P} },$$</span><p>where <i>g</i><sub><i>n</i></sub> = <i>p</i><sub><i>n</i></sub> − <i>r</i><sub><i>n−</i>1</sub><i>.</i> We establish the properties of <span>\\(\\overline{P }\\)</span>-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit <i>i</i> in the <span>\\(\\overline{P }\\)</span>-representation of a number <span>\\({x=\\Delta }_{{g}_{1}{g}_{2}\\dots {g}_{2}\\dots }^{\\overline{P} }\\)</span> defined by the equality\n</p><span>$${\\nu }_{i}^{\\overline{P} }\\left(x\\right)=\\underset{k\\to \\infty }{\\mathrm{lim}}\\frac{{N}_{i}^{\\overline{P} }\\left(x,k\\right)}{k},$$</span><p>where <span>\\({N}_{i}^{\\overline{P} }\\left(x,k\\right)\\)</span> denotes the amount of numbers <i>n</i> such that <i>g</i><sub><i>n</i></sub> = <i>i</i> and <i>n</i> ≤ <i>k.</i> In particular, we establish conditions under which the frequency <span>\\({\\nu }_{i}^{\\overline{P} }\\left(x\\right)\\)</span> exists and is constant for almost all <i>x</i> ∈ (0; 1]<i>.</i> In addition, we also determine the conditions under which the digits in <span>\\(\\overline{P }\\)</span>-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1]<i>.</i></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02246-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the representation of real numbers by Perron series (P-representation) given by

$$\left(\left.0;1\right]\ni x=\sum_{n=0}^{\infty }\frac{{r}_{0}{r}_{1}\dots {r}_{n}}{\left({p}_{1}-1\right){p}_{1}\dots \left({p}_{n}-1\right){p}_{n}{p}_{n+1}}={\Delta }_{{p}_{1}{p}_{2}\dots }^{P}\right.,$$

where rn, pn ∈ ℕ, pn+1rn + 1, and its transcoding (\(\overline{P }\)-representation)

$${x=\Delta }_{{g}_{1}{g}_{2}\dots }^{\overline{P} },$$

where gn = pnrn−1. We establish the properties of \(\overline{P }\)-representations typical of almost all numbers with respect to the Lebesgue measure (normal properties of the representations of numbers). We also examine the conditions of existence of the frequency of a digit i in the \(\overline{P }\)-representation of a number \({x=\Delta }_{{g}_{1}{g}_{2}\dots {g}_{2}\dots }^{\overline{P} }\) defined by the equality

$${\nu }_{i}^{\overline{P} }\left(x\right)=\underset{k\to \infty }{\mathrm{lim}}\frac{{N}_{i}^{\overline{P} }\left(x,k\right)}{k},$$

where \({N}_{i}^{\overline{P} }\left(x,k\right)\) denotes the amount of numbers n such that gn = i and nk. In particular, we establish conditions under which the frequency \({\nu }_{i}^{\overline{P} }\left(x\right)\) exists and is constant for almost all x ∈ (0; 1]. In addition, we also determine the conditions under which the digits in \(\overline{P }\)-representations are encountered finitely or infinitely many times for almost all numbers from (0; 1].

分享
查看原文
用Perron级数表示数的正规性质
本文研究了用Perron级数(p -表示法)表示实数的方法$$\left(\left.0;1\right]\ni x=\sum_{n=0}^{\infty }\frac{{r}_{0}{r}_{1}\dots {r}_{n}}{\left({p}_{1}-1\right){p}_{1}\dots \left({p}_{n}-1\right){p}_{n}{p}_{n+1}}={\Delta }_{{p}_{1}{p}_{2}\dots }^{P}\right.,$$式中rn, pn∈n, pn+1≥rn +1,其转码(\(\overline{P }\)-代表)$${x=\Delta }_{{g}_{1}{g}_{2}\dots }^{\overline{P} },$$式中gn = pn−rn−1。我们建立的性质 \(\overline{P }\)-关于勒贝格测度的几乎所有数的典型表示(数表示的正常性质)。我们还检验了数字i的频率存在的条件 \(\overline{P }\)-数字的表示 \({x=\Delta }_{{g}_{1}{g}_{2}\dots {g}_{2}\dots }^{\overline{P} }\) 由等式定义$${\nu }_{i}^{\overline{P} }\left(x\right)=\underset{k\to \infty }{\mathrm{lim}}\frac{{N}_{i}^{\overline{P} }\left(x,k\right)}{k},$$在哪里 \({N}_{i}^{\overline{P} }\left(x,k\right)\) 表示满足gn = i且n≤k的数n的个数。特别地,我们建立了频率 \({\nu }_{i}^{\overline{P} }\left(x\right)\) 对于几乎所有x∈(0;1]。此外,我们还确定了在何种条件下的数字 \(\overline{P }\)-对于几乎所有从(0;1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信