Univalence Criteria for Locally Univalent Analytic Functions

IF 0.5 4区 数学 Q3 MATHEMATICS
Zhenyong Hu, Jinhua Fan, Xiaoyuan Wang
{"title":"Univalence Criteria for Locally Univalent Analytic Functions","authors":"Zhenyong Hu, Jinhua Fan, Xiaoyuan Wang","doi":"10.1007/s11253-023-02250-2","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <i>p</i>(<i>z</i>) = 1 + <i>zϕ″</i>(<i>z</i>)<i>/ϕ′</i>(<i>z</i>), where <i>ϕ</i>(<i>z</i>) is a locally univalent analytic function in the unit disk <b>D</b> with <i>ϕ</i>(0) = <i>ϕ′</i>(1) <i>−</i> 1 = 0<i>.</i> We establish the lower and upper bounds for the best constants <i>σ</i><sub>0</sub> and <i>σ</i><sub>1</sub> such that <span>\\({e}^{{-\\sigma }_{0}/2}&lt;\\left|p\\left(z\\right)\\right|&lt;{e}^{{\\sigma }_{0}/2}\\)</span> and |<i>p</i>(<i>w</i>)/<i>p</i>(<i>z</i>)| &lt; <span>\\({e}^{{\\sigma }_{1}}\\)</span> for <i>z</i>, <i>w</i> ∈ <b>D</b>, respectively, imply the univalence of <i>ϕ</i>(<i>z</i>) in <b>D.</b></p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"46 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02250-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that p(z) = 1 + zϕ″(z)/ϕ′(z), where ϕ(z) is a locally univalent analytic function in the unit disk D with ϕ(0) = ϕ′(1) 1 = 0. We establish the lower and upper bounds for the best constants σ0 and σ1 such that \({e}^{{-\sigma }_{0}/2}<\left|p\left(z\right)\right|<{e}^{{\sigma }_{0}/2}\) and |p(w)/p(z)| < \({e}^{{\sigma }_{1}}\) for z, wD, respectively, imply the univalence of ϕ(z) in D.

局部一元解析函数的一元准则
设p(z) = 1 + zϕ″(z)/ϕ ' (z),其中φ (z)是单位圆盘D中的局部一元解析函数,其中φ (0) = φ '(1)−1 = 0。我们建立了最佳常数σ0和σ1的下界和上界,使得\({e}^{{-\sigma }_{0}/2}<\left|p\left(z\right)\right|<{e}^{{\sigma }_{0}/2}\)和|p(w)/p(z)| &lt;\({e}^{{\sigma }_{1}}\)对于z, w∈D,分别表示D中φ (z)的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信