Determination of Some Properties of Starlike and Close-to-Convex Functions According to Subordinate Conditions with Convexity of a Certain Analytic Function

IF 0.5 4区 数学 Q3 MATHEMATICS
Hasan Şahin, İsmet Yildiz
{"title":"Determination of Some Properties of Starlike and Close-to-Convex Functions According to Subordinate Conditions with Convexity of a Certain Analytic Function","authors":"Hasan Şahin, İsmet Yildiz","doi":"10.1007/s11253-023-02251-1","DOIUrl":null,"url":null,"abstract":"<p>Investigation of the theory of complex functions is one of the most fascinating aspects of the theory of complex analytic functions of one variable. It has a huge impact on all areas of mathematics. Numerous mathematical concepts are explained when viewed through the theory of complex functions. Let <span>\\(f\\left(z\\right)\\in A, f\\left(z\\right)=z+{\\sum }_{n\\ge 2}^{\\infty }{a}_{n}{z}^{n},\\)</span> be an analytic function in an open unit disc <i>U</i> = {<i>z</i> : <i>|z| &lt;</i> 1<i>, z</i> ∈ ℂ} normalized by <i>f</i>(0) = 0 and <i>f</i>′(0) = 1<i>.</i> For close-to-convex and starlike functions, new and different conditions are obtained by using subordination properties, where <i>r</i> is a positive integer of order <span>\\({2}^{-r}\\left(0&lt;{2}^{-r}\\le \\frac{1}{2}\\right).\\)</span> By using subordination, we propose a criterion for <i>f</i>(<i>z</i>) ∈ <i>S</i><sup>*</sup>[<i>a</i><sup><i>r</i></sup><i>, b</i><sup><i>r</i></sup>]<i>.</i> The relations for starlike and close-to-convex functions are investigated under certain conditions according to their subordination properties. At the same time, we analyze the convexity of some analytic functions and study their regional transformations. In addition, the properties of convexity are examined for <i>f</i>(<i>z</i>) ∈ <i>A</i>.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"44 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-023-02251-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Investigation of the theory of complex functions is one of the most fascinating aspects of the theory of complex analytic functions of one variable. It has a huge impact on all areas of mathematics. Numerous mathematical concepts are explained when viewed through the theory of complex functions. Let \(f\left(z\right)\in A, f\left(z\right)=z+{\sum }_{n\ge 2}^{\infty }{a}_{n}{z}^{n},\) be an analytic function in an open unit disc U = {z : |z| < 1, z ∈ ℂ} normalized by f(0) = 0 and f′(0) = 1. For close-to-convex and starlike functions, new and different conditions are obtained by using subordination properties, where r is a positive integer of order \({2}^{-r}\left(0<{2}^{-r}\le \frac{1}{2}\right).\) By using subordination, we propose a criterion for f(z) ∈ S*[ar, br]. The relations for starlike and close-to-convex functions are investigated under certain conditions according to their subordination properties. At the same time, we analyze the convexity of some analytic functions and study their regional transformations. In addition, the properties of convexity are examined for f(z) ∈ A.

根据具有一定解析函数凸性的从属条件确定星形和近凸函数的一些性质
复变函数理论的研究是单变量复解析函数理论中最引人入胜的一个方面。它对数学的各个领域都有巨大的影响。通过复数函数理论,可以解释许多数学概念。设\(f\left(z\right)\in A, f\left(z\right)=z+{\sum }_{n\ge 2}^{\infty }{a}_{n}{z}^{n},\)为开单位圆盘U = {z: |z| &lt;1, z∈f}(0) = 0且f '(0) = 1归一化。对于接近凸的星形函数,利用隶属性得到了新的不同的条件,其中r是阶为\({2}^{-r}\left(0<{2}^{-r}\le \frac{1}{2}\right).\)的正整数。利用隶属性,我们给出了f(z)∈S*[ar, br]的判据。根据星形函数和近凸函数的从属性质,研究了它们在一定条件下的关系。同时,我们分析了一些解析函数的凸性,并研究了它们的区域变换。此外,对f(z)∈A检验了凸性的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信