{"title":"BdASR5 Positively Regulates Drought Tolerance by Mediating ABA Signaling Pathway in Brachypodium distachyon","authors":"Jin Seok Yoon, Depika Prasad, Yong Weon Seo","doi":"10.1007/s12374-023-09411-7","DOIUrl":null,"url":null,"abstract":"<p>Abscisic acid-, stress-, and ripening-induced (ASR) proteins are involved in response to abiotic stresses. However, the precise role of <i>Brachypodium ASR</i> genes in enhancing tolerance under drought stress conditions remains to be determined. In this study, we characterized the <i>BdASR5</i> gene and determined that it has a function in drought stress tolerance. Overexpression of <i>BdASR5</i> confers tolerance to drought stress in <i>Brachypodium</i>. Overexpression of <i>BdASR5</i> resulted in higher relative water content and chlorophyll content, and lower ion leakage than WT plants under drought stress conditions. Moreover, overexpression of <i>BdASR5</i> displayed increased antioxidant enzyme activity and upregulated expression of ROS-related, stress-related, and ABA-dependent pathway genes under drought stress condition. In addition, overexpression of <i>BdASR5</i> showed hypersensitive to exogenous ABA at the germination stage. Moreover, overexpression of <i>BdASR5</i> showed increased stomatal closure and decreased stomata conductance under ABA conditions. Collectively, these results suggest that <i>BdASR5</i> functions as a positive regulator in response to drought stress.</p>","PeriodicalId":16762,"journal":{"name":"Journal of Plant Biology","volume":"2 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12374-023-09411-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abscisic acid-, stress-, and ripening-induced (ASR) proteins are involved in response to abiotic stresses. However, the precise role of Brachypodium ASR genes in enhancing tolerance under drought stress conditions remains to be determined. In this study, we characterized the BdASR5 gene and determined that it has a function in drought stress tolerance. Overexpression of BdASR5 confers tolerance to drought stress in Brachypodium. Overexpression of BdASR5 resulted in higher relative water content and chlorophyll content, and lower ion leakage than WT plants under drought stress conditions. Moreover, overexpression of BdASR5 displayed increased antioxidant enzyme activity and upregulated expression of ROS-related, stress-related, and ABA-dependent pathway genes under drought stress condition. In addition, overexpression of BdASR5 showed hypersensitive to exogenous ABA at the germination stage. Moreover, overexpression of BdASR5 showed increased stomatal closure and decreased stomata conductance under ABA conditions. Collectively, these results suggest that BdASR5 functions as a positive regulator in response to drought stress.
期刊介绍:
Journal of Plant Biology, an official publication of the Botanical Society of Korea, is an international journal devoted to basic researches in biochemistry, cellular biology, development, ecology, genetics, molecular biology, physiology, and systematics of plants.
The Journal publishes the following categories of paper:
Original articles -- For publication in Journal of Plant Biology the manuscript must provide a significant new contribution to our understanding of plants. All areas of plant biology are welcome. No limit on the length, but a concise presentation is encouraged.
Reviews -- Invited by the EiC.
Brief Communications -- Concise but independent report representing significant contribution to plant science.
The Botanical Society of Korea was founded on November 30, 1957 to promote studies, disseminate and exchange information on the field of plant biology. The first issue of The Korean Journal of Botany, the official publication of the society, was published on April 1, 1958. It was published twice a year, but quarterly from 5th volume in 1962. In 1994, it was renamed to Journal of Plant Biology and published in English since 1996. The journal entered its 50th year of publication in 2007.