The Analytic Embedding of Geometries with Scalar Product

V. A. Kyrov
{"title":"The Analytic Embedding of Geometries with Scalar Product","authors":"V. A. Kyrov","doi":"10.1134/s105513442101003x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We solve the problem of finding all <span>\\((n+2)\\)</span>-dimensional\ngeometries defined by a nondegenerate analytic function </p><span>$$ \\varphi (\\varepsilon _1x^1_Ax^1_B+ \\cdots +\\varepsilon\n_{n+1}x^{n+1}_Ax^{n+1}_B,w_A,w_B),$$</span><p> which is an\ninvariant of a motion group of dimension <span>\\((n+1)(n+2)/2\\)</span>. As a\nresult, we have two solutions: the expected scalar product <span>\\(\\varepsilon _1x^1_Ax^1_B+ \\cdots +\\varepsilon _{n+1}x^{n+1}_Ax^{n+1}_B+\\varepsilon w_Aw_B \\)</span> and the unexpected scalar product\n<span>\\(\\varepsilon _1x^1_Ax^1_B+ \\cdots +\\varepsilon _{n+1}x^{n+1}_Ax^{n+1}_B+w_A+w_B \\)</span>. The solution of the problem is reduced to the\nanalytic solution of a functional equation of a special kind.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s105513442101003x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We solve the problem of finding all \((n+2)\)-dimensional geometries defined by a nondegenerate analytic function

$$ \varphi (\varepsilon _1x^1_Ax^1_B+ \cdots +\varepsilon _{n+1}x^{n+1}_Ax^{n+1}_B,w_A,w_B),$$

which is an invariant of a motion group of dimension \((n+1)(n+2)/2\). As a result, we have two solutions: the expected scalar product \(\varepsilon _1x^1_Ax^1_B+ \cdots +\varepsilon _{n+1}x^{n+1}_Ax^{n+1}_B+\varepsilon w_Aw_B \) and the unexpected scalar product \(\varepsilon _1x^1_Ax^1_B+ \cdots +\varepsilon _{n+1}x^{n+1}_Ax^{n+1}_B+w_A+w_B \). The solution of the problem is reduced to the analytic solution of a functional equation of a special kind.

标量积几何的解析嵌入
摘要:我们解决了寻找所有\((n+2)\)维几何的问题,这些几何是由一个非退化解析函数$$ \varphi (\varepsilon _1x^1_Ax^1_B+ \cdots +\varepsilon_{n+1}x^{n+1}_Ax^{n+1}_B,w_A,w_B),$$定义的,该函数是维度为\((n+1)(n+2)/2\)的运动群的不变量。因此,我们有两个解:期望的标量积\(\varepsilon _1x^1_Ax^1_B+ \cdots +\varepsilon _{n+1}x^{n+1}_Ax^{n+1}_B+\varepsilon w_Aw_B \)和意外的标量积\(\varepsilon _1x^1_Ax^1_B+ \cdots +\varepsilon _{n+1}x^{n+1}_Ax^{n+1}_B+w_A+w_B \)。该问题的解被简化为一类特殊泛函方程的解析解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信