Moment-based distributionally robust joint chance constrained optimization for service network design under demand uncertainty

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yongsen Zang, Meiqin Wang, Huiqiang Liu, Mingyao Qi
{"title":"Moment-based distributionally robust joint chance constrained optimization for service network design under demand uncertainty","authors":"Yongsen Zang, Meiqin Wang, Huiqiang Liu, Mingyao Qi","doi":"10.1007/s11081-023-09858-0","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a distributionally robust joint chance constrained (DRJCC) programming approach to optimize the service network design (SND) problem under demand uncertainty. The distributionally robust method does not need complete distribution information and utilizes restricted historical data knowledge, which is significant in scarce data situations. The joint consideration of chance constraints enables more effective control of event probability, by which network managers can realize the purpose of controlling the overall service level of multi-commodities in a service network. DRJCC optimization can also help decision-makers adjust the network’s conservativeness, robustness, and service rates by setting the probability parameters of the chance constraints. We reformulate the DRJCC model by addressing the corresponding distributionally robust joint chance constraints with the worst-case Conditional Value-at-Risk method and Lagrange duality theory. The model is approximately reformulated as a mixed-integer linear program, which is easier to solve than the mixed-integer semi-definite programming model in existing literature. We also develop two benchmark approaches for comparison: Bonferroni inequality approximation and scenario-based stochastic program. Comparative numerical studies demonstrate the robustness and the validation of the proposed formulations. A case study is conducted to demonstrate the industrial performance of the uncertain SND under the DRJCC formulation. We explore the impact of the confidence level parameter on operational cost and real service level, reveal the general correlation between them. We also extract several risk-averse managerial insights for logistics fleet managers.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-023-09858-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a distributionally robust joint chance constrained (DRJCC) programming approach to optimize the service network design (SND) problem under demand uncertainty. The distributionally robust method does not need complete distribution information and utilizes restricted historical data knowledge, which is significant in scarce data situations. The joint consideration of chance constraints enables more effective control of event probability, by which network managers can realize the purpose of controlling the overall service level of multi-commodities in a service network. DRJCC optimization can also help decision-makers adjust the network’s conservativeness, robustness, and service rates by setting the probability parameters of the chance constraints. We reformulate the DRJCC model by addressing the corresponding distributionally robust joint chance constraints with the worst-case Conditional Value-at-Risk method and Lagrange duality theory. The model is approximately reformulated as a mixed-integer linear program, which is easier to solve than the mixed-integer semi-definite programming model in existing literature. We also develop two benchmark approaches for comparison: Bonferroni inequality approximation and scenario-based stochastic program. Comparative numerical studies demonstrate the robustness and the validation of the proposed formulations. A case study is conducted to demonstrate the industrial performance of the uncertain SND under the DRJCC formulation. We explore the impact of the confidence level parameter on operational cost and real service level, reveal the general correlation between them. We also extract several risk-averse managerial insights for logistics fleet managers.

Abstract Image

需求不确定条件下基于矩的分布式鲁棒联合机会约束优化
针对需求不确定条件下的服务网络设计问题,提出了一种分布式鲁棒联合机会约束规划方法。该方法不需要完整的分布信息,利用有限的历史数据知识,在数据稀缺的情况下具有重要意义。通过对机会约束的共同考虑,可以更有效地控制事件概率,从而实现网络管理者控制服务网络中多种商品整体服务水平的目的。DRJCC优化还可以通过设置机会约束的概率参数,帮助决策者调整网络的保守性、鲁棒性和服务率。利用最坏情况条件风险值方法和拉格朗日对偶理论对相应的分布鲁棒联合机会约束进行了重新表述。该模型近似地重新表述为混合整数线性规划,比现有文献中的混合整数半确定规划模型更易于求解。我们还开发了两种基准方法进行比较:Bonferroni不等式近似和基于场景的随机程序。比较数值研究证明了所提公式的鲁棒性和有效性。通过实例研究,论证了DRJCC配方下不确定SND的工业性能。我们探讨了置信水平参数对运营成本和实际服务水平的影响,揭示了它们之间的一般相关性。我们还为物流车队经理提取了一些规避风险的管理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信