Globally optimal scheduling of an electrochemical process via data-driven dynamic modeling and wavelet-based adaptive grid refinement

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Chrysanthi Papadimitriou, Tim Varelmann, Christian Schröder, Andreas Jupke, Alexander Mitsos
{"title":"Globally optimal scheduling of an electrochemical process via data-driven dynamic modeling and wavelet-based adaptive grid refinement","authors":"Chrysanthi Papadimitriou, Tim Varelmann, Christian Schröder, Andreas Jupke, Alexander Mitsos","doi":"10.1007/s11081-023-09860-6","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical recovery of succinic acid is an electricity intensive process with storable feeds and products, making its flexible operation promising for fluctuating electricity prices. We perform experiments of an electrolysis cell and use these to identify a data-driven model. We apply global dynamic optimization using discrete-time Hammerstein–Wiener models to solve the nonconvex offline scheduling problem to global optimality. We detect the method’s high computational cost and propose an adaptive grid refinement algorithm for global optimization (AGRAGO), which uses a wavelet transform of the control time series and a refinement criterion based on Lagrangian multipliers. AGRAGO is used for the automatic optimal allocation of the control variables in the grid to provide a globally optimal schedule within a given time frame. We demonstrate the applicability of AGRAGO while maintaining the high computational expenses of the solution method and detect superior results to uniform grid sampling indicating economic savings of 14.1%.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-023-09860-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical recovery of succinic acid is an electricity intensive process with storable feeds and products, making its flexible operation promising for fluctuating electricity prices. We perform experiments of an electrolysis cell and use these to identify a data-driven model. We apply global dynamic optimization using discrete-time Hammerstein–Wiener models to solve the nonconvex offline scheduling problem to global optimality. We detect the method’s high computational cost and propose an adaptive grid refinement algorithm for global optimization (AGRAGO), which uses a wavelet transform of the control time series and a refinement criterion based on Lagrangian multipliers. AGRAGO is used for the automatic optimal allocation of the control variables in the grid to provide a globally optimal schedule within a given time frame. We demonstrate the applicability of AGRAGO while maintaining the high computational expenses of the solution method and detect superior results to uniform grid sampling indicating economic savings of 14.1%.

Abstract Image

基于数据驱动动态建模和小波自适应网格优化的电化学过程全局最优调度
琥珀酸的电化学回收是一个耗电量大的过程,原料和产品具有可储存性,操作灵活,有望应对电价波动。我们执行电解电池的实验,并使用这些来确定一个数据驱动的模型。本文采用离散时间Hammerstein-Wiener模型进行全局动态优化,求解非凸离线调度问题的全局最优性。针对该方法计算量大的缺点,提出了一种基于拉格朗日乘子的自适应网格优化算法(agago),该算法采用控制时间序列的小波变换和基于拉格朗日乘子的优化准则。agago用于网格中控制变量的自动优化分配,以在给定的时间框架内提供全局最优调度。我们证明了agago的适用性,同时保持了求解方法的高计算费用,并检测到优于均匀网格采样的结果,表明经济节省14.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信