{"title":"Triggering a variety of Nash-equilibria in oligopolistic electricity markets","authors":"Mihály Dolányi, Kenneth Bruninx, Erik Delarue","doi":"10.1007/s11081-023-09866-0","DOIUrl":null,"url":null,"abstract":"<p>Liberalized electricity markets promise a cost-efficient operation and expansion of power systems but may as well introduce opportunities for strategic gaming for price-making agents. Given the rapid transition of today’s energy systems, unconventional generation and consumption patterns are emerging, presenting new challenges for regulators and policymakers to prevent strategic behavior. The strategic offering of various price-making agents in oligopolistic electricity markets resembles a multi-leader-common-follower game. The decision problem of each agent can be modeled as a bi-level optimization problem, consisting of the strategic agent’s decision problem at the upper-level, and the market clearing at the lower-level. When modeling a multi-leader game, i.e., a set of bi-level optimization problems, the resulting equilibrium problem with equilibrium constraints poses several challenges. Real-life applicability or policy-oriented studies are challenged by the potential multiplicity of equilibria and the difficulty of exhaustively exploring this range of equilibria. In this paper, the range of equilibria is explored by using a novel simultaneous solution method. The proposed solution technique relies on applying Scholtes’ regularization before concatenating the strategic actor’s decision problems’ optimality conditions. Hence, the attained solutions are stationary points with high confidence. In a stylized example, different strategic agents, including an energy storage system, are modeled to capture the asymmetric opportunities they may face when exercising market power. Our analysis reveals that these models’ outcomes may span a broad range, impacting the derived economic metrics significantly.</p>","PeriodicalId":56141,"journal":{"name":"Optimization and Engineering","volume":"25 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-023-09866-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Liberalized electricity markets promise a cost-efficient operation and expansion of power systems but may as well introduce opportunities for strategic gaming for price-making agents. Given the rapid transition of today’s energy systems, unconventional generation and consumption patterns are emerging, presenting new challenges for regulators and policymakers to prevent strategic behavior. The strategic offering of various price-making agents in oligopolistic electricity markets resembles a multi-leader-common-follower game. The decision problem of each agent can be modeled as a bi-level optimization problem, consisting of the strategic agent’s decision problem at the upper-level, and the market clearing at the lower-level. When modeling a multi-leader game, i.e., a set of bi-level optimization problems, the resulting equilibrium problem with equilibrium constraints poses several challenges. Real-life applicability or policy-oriented studies are challenged by the potential multiplicity of equilibria and the difficulty of exhaustively exploring this range of equilibria. In this paper, the range of equilibria is explored by using a novel simultaneous solution method. The proposed solution technique relies on applying Scholtes’ regularization before concatenating the strategic actor’s decision problems’ optimality conditions. Hence, the attained solutions are stationary points with high confidence. In a stylized example, different strategic agents, including an energy storage system, are modeled to capture the asymmetric opportunities they may face when exercising market power. Our analysis reveals that these models’ outcomes may span a broad range, impacting the derived economic metrics significantly.
期刊介绍:
Optimization and Engineering is a multidisciplinary journal; its primary goal is to promote the application of optimization methods in the general area of engineering sciences. We expect submissions to OPTE not only to make a significant optimization contribution but also to impact a specific engineering application.
Topics of Interest:
-Optimization: All methods and algorithms of mathematical optimization, including blackbox and derivative-free optimization, continuous optimization, discrete optimization, global optimization, linear and conic optimization, multiobjective optimization, PDE-constrained optimization & control, and stochastic optimization. Numerical and implementation issues, optimization software, benchmarking, and case studies.
-Engineering Sciences: Aerospace engineering, biomedical engineering, chemical & process engineering, civil, environmental, & architectural engineering, electrical engineering, financial engineering, geosciences, healthcare engineering, industrial & systems engineering, mechanical engineering & MDO, and robotics.