A Dual Neural Network Approach to Topology Optimization for Thermal-Electromagnetic Device Design

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Benjamin A. Jasperson , Michael G. Wood , Harley T. Johnson
{"title":"A Dual Neural Network Approach to Topology Optimization for Thermal-Electromagnetic Device Design","authors":"Benjamin A. Jasperson ,&nbsp;Michael G. Wood ,&nbsp;Harley T. Johnson","doi":"10.1016/j.cad.2023.103665","DOIUrl":null,"url":null,"abstract":"<div><p><span>Topology optimization<span><span> for engineering problems often requires multiphysics (dual objective functions) and multi-timescale considerations to be coupled with manufacturing constraints across a range of target values. We present a dual neural network<span> approach to topology optimization to optimize a 3-dimensional thermal-electromagnetic device (optical shutter) for maximum temperature rise across a range of extinction ratios while also considering manufacturing tolerances. One neural network performs the topology optimization, allocating material to each sub-pixel within a repeating unit cell. The size of each sub-pixel is selected with manufacturing considerations in mind. The other neural network is trained to predict performance of the device using extinction ratio and temperature rise over a given time period. Training data is generated using a </span></span>finite element model for both the </span></span>electromagnetic wave<span> frequency domain and thermal time domain problems. Optimized designs across a range of targets are shown.</span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448523001975","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Topology optimization for engineering problems often requires multiphysics (dual objective functions) and multi-timescale considerations to be coupled with manufacturing constraints across a range of target values. We present a dual neural network approach to topology optimization to optimize a 3-dimensional thermal-electromagnetic device (optical shutter) for maximum temperature rise across a range of extinction ratios while also considering manufacturing tolerances. One neural network performs the topology optimization, allocating material to each sub-pixel within a repeating unit cell. The size of each sub-pixel is selected with manufacturing considerations in mind. The other neural network is trained to predict performance of the device using extinction ratio and temperature rise over a given time period. Training data is generated using a finite element model for both the electromagnetic wave frequency domain and thermal time domain problems. Optimized designs across a range of targets are shown.

Abstract Image

Abstract Image

热电磁器件拓扑优化的双神经网络方法
工程问题的拓扑优化通常需要多物理场(双目标函数)和多时间尺度考虑,并结合一系列目标值的制造约束。我们提出了一种双神经网络拓扑优化方法,以优化三维热电磁器件(光学快门)在消光比范围内的最大温升,同时考虑制造公差。一个神经网络执行拓扑优化,将材料分配到重复单元格中的每个子像素。每个子像素的大小是根据制造考虑因素来选择的。另一个神经网络被训练来使用消光比和给定时间段内的温升来预测设备的性能。训练数据是用有限元模型生成的,用于电磁波频域和热时域问题。展示了一系列目标的优化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信