{"title":"Nonlinear Mathematical Modeling and Vibration Suppression Control of a Flexible Tethered Satellite System in an Orbital Transfer Mission","authors":"Zahra Jafari Shahbazzadeh, Ramin Vatankhah","doi":"10.1007/s40997-023-00728-9","DOIUrl":null,"url":null,"abstract":"<p>Due to the risks that the debris satellites pose to missions, one of the more recent study subjects in space is the removal of these debris masses from orbit. The usage of tethered satellites is one of the various approaches that are suggested for this objective and is taken into consideration in this research. That is, a tether from an operational satellite moves the debris satellite to a lower Earth orbit. This is done by extracting the mathematical model of the in-plane motion of a flexible tethered satellite system. The assumption of large deformations is also used for flexible appendages, which results in highly nonlinear governing equations. Four different types of controllers have been developed with the intention of suppressing the oscillations of flexible panels with an orbital transfer at a certain velocity decrease. Except for the basic PID controller, the other three are extensions of the classical form of sliding mode controller. In theory, every controller has unique qualities. Applying these features to the system in a computer simulation allows for their verification. The controllers' relative levels of efficacy are contrasted.</p>","PeriodicalId":49063,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","volume":"118 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00728-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the risks that the debris satellites pose to missions, one of the more recent study subjects in space is the removal of these debris masses from orbit. The usage of tethered satellites is one of the various approaches that are suggested for this objective and is taken into consideration in this research. That is, a tether from an operational satellite moves the debris satellite to a lower Earth orbit. This is done by extracting the mathematical model of the in-plane motion of a flexible tethered satellite system. The assumption of large deformations is also used for flexible appendages, which results in highly nonlinear governing equations. Four different types of controllers have been developed with the intention of suppressing the oscillations of flexible panels with an orbital transfer at a certain velocity decrease. Except for the basic PID controller, the other three are extensions of the classical form of sliding mode controller. In theory, every controller has unique qualities. Applying these features to the system in a computer simulation allows for their verification. The controllers' relative levels of efficacy are contrasted.
期刊介绍:
Transactions of Mechanical Engineering is to foster the growth of scientific research in all branches of mechanical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in mechanical engineering as well
as applications of established techniques to new domains in various mechanical engineering disciplines such as: Solid Mechanics, Kinematics, Dynamics Vibration and Control, Fluids Mechanics, Thermodynamics and Heat Transfer, Energy and Environment, Computational Mechanics, Bio Micro and Nano Mechanics and Design and Materials Engineering & Manufacturing.
The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.