Fatemeh Taghipour, Ahmad Shirzadi, Mansour Safarpoor
{"title":"An RBF-FD Method for Numerical Solutions of 2D Diffusion-Wave and Diffusion Equations of Distributed Fractional Order","authors":"Fatemeh Taghipour, Ahmad Shirzadi, Mansour Safarpoor","doi":"10.1007/s44198-023-00153-1","DOIUrl":null,"url":null,"abstract":"<p>The subject of this paper is to propose a numerical algorithm for solving 2D diffusion and diffusion-wave equations of distributed order fractional derivatives. Such equations arise in modelling complex systems and have many important applications. Existence of integral term over the order of fractional derivative causes the high complexity of these equations and so their numerical solutions needs special cares. Using Gauss quadrature approach for discretizing the integral term of fractional derivative converts the distributed equation into a multi-term fractional differential equation. Then, the time variable is discretized with a suitable finite difference approach. The resultant semi-discretized equations are fully discretized by a radial basis function-generated finite difference based method. Convergence of the method are studied numerically. Various kind of test problems are considered for a comprehensive numerical study and the results confirm the efficiency of the method.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"333 ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-023-00153-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The subject of this paper is to propose a numerical algorithm for solving 2D diffusion and diffusion-wave equations of distributed order fractional derivatives. Such equations arise in modelling complex systems and have many important applications. Existence of integral term over the order of fractional derivative causes the high complexity of these equations and so their numerical solutions needs special cares. Using Gauss quadrature approach for discretizing the integral term of fractional derivative converts the distributed equation into a multi-term fractional differential equation. Then, the time variable is discretized with a suitable finite difference approach. The resultant semi-discretized equations are fully discretized by a radial basis function-generated finite difference based method. Convergence of the method are studied numerically. Various kind of test problems are considered for a comprehensive numerical study and the results confirm the efficiency of the method.
期刊介绍:
Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles.
Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics.
The main subjects are:
-Nonlinear Equations of Mathematical Physics-
Quantum Algebras and Integrability-
Discrete Integrable Systems and Discrete Geometry-
Applications of Lie Group Theory and Lie Algebras-
Non-Commutative Geometry-
Super Geometry and Super Integrable System-
Integrability and Nonintegrability, Painleve Analysis-
Inverse Scattering Method-
Geometry of Soliton Equations and Applications of Twistor Theory-
Classical and Quantum Many Body Problems-
Deformation and Geometric Quantization-
Instanton, Monopoles and Gauge Theory-
Differential Geometry and Mathematical Physics