Development and characterization of hybrid composites from sustainable green materials

IF 1.8 4区 材料科学 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Green Materials Pub Date : 2021-12-14 DOI:20.00044
Mert Yildirim, Tolera Aderie Negawo, Ali Kilic, Zeki Candan
{"title":"Development and characterization of hybrid composites from sustainable green materials","authors":"Mert Yildirim, Tolera Aderie Negawo, Ali Kilic, Zeki Candan","doi":"20.00044","DOIUrl":null,"url":null,"abstract":"The main objective of this study was to evaluate the dynamic mechanical thermal analysis (DMTA), mechanical, physical and wettability properties of hybrid composites developed from sustainable green materials, jute fiber and wood particles that were manufactured by using the vacuum-assisted resin transfer molding technique. The storage modulus, loss modulus and tan <i>δ</i> values of the hybrid composites were also determined to evaluate the DMTA performance. The results showed that the storage modulus of jute/polyester resin is superior to those of the jute–wood/polyester hybrid and wood/polyester up to the glass transition temperature (<i>T</i> <sub>g</sub>). However, for temperature ranges higher than <i>T</i> <sub>g</sub>, the stiffness of hybrid composites increased relatively. The <i>T</i> <sub>g</sub> values from loss modulus and tan δ peaks support this effect of hybridization. Tests on mechanical properties showed that the jute/polyester specimens had a significant increase in tensile strength compared with the jute–wood/polyester hybrid and wood/polyester specimens. The results of tests of physical properties showed that the wood/polyester specimen had the lowest values of thickness swelling, water absorption and moisture content compared with the jute/polyester and jute–wood/polyester composites. The highest contact angle was obtained from composites made of wood/polyester. It could be concluded that the composites with enhanced performance could be used as novel green composites in various sectors.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/20.00044","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of this study was to evaluate the dynamic mechanical thermal analysis (DMTA), mechanical, physical and wettability properties of hybrid composites developed from sustainable green materials, jute fiber and wood particles that were manufactured by using the vacuum-assisted resin transfer molding technique. The storage modulus, loss modulus and tan δ values of the hybrid composites were also determined to evaluate the DMTA performance. The results showed that the storage modulus of jute/polyester resin is superior to those of the jute–wood/polyester hybrid and wood/polyester up to the glass transition temperature (T g). However, for temperature ranges higher than T g, the stiffness of hybrid composites increased relatively. The T g values from loss modulus and tan δ peaks support this effect of hybridization. Tests on mechanical properties showed that the jute/polyester specimens had a significant increase in tensile strength compared with the jute–wood/polyester hybrid and wood/polyester specimens. The results of tests of physical properties showed that the wood/polyester specimen had the lowest values of thickness swelling, water absorption and moisture content compared with the jute/polyester and jute–wood/polyester composites. The highest contact angle was obtained from composites made of wood/polyester. It could be concluded that the composites with enhanced performance could be used as novel green composites in various sectors.
可持续绿色材料混合复合材料的开发与表征
本研究的主要目的是评估由可持续绿色材料、黄麻纤维和木颗粒制成的混合复合材料的动态机械热分析(DMTA)、机械、物理和润湿性,这些复合材料是通过真空辅助树脂转移成型技术制造的。测定了复合材料的存储模量、损耗模量和tan δ值,评价了复合材料的DMTA性能。结果表明:在玻璃化转变温度(T g)以内,黄麻/聚酯树脂的存储模量优于黄麻/聚酯复合材料和木材/聚酯复合材料,但在高于T g的温度范围内,混杂复合材料的刚度相对增大。损耗模量和tan δ峰的tg值支持这种杂化效应。力学性能试验表明,黄麻/聚酯试样的抗拉强度明显高于黄麻/聚酯杂化试样和木材/聚酯试样。物理性能测试结果表明,与黄麻/聚酯和黄麻/聚酯复合材料相比,木材/聚酯试样的厚度膨胀、吸水率和含水率最低。木材/聚酯复合材料的接触角最高。结果表明,该复合材料的性能得到了提高,可作为新型绿色复合材料应用于各个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Materials
Green Materials Environmental Science-Pollution
CiteScore
3.50
自引率
15.80%
发文量
24
期刊介绍: The focus of Green Materials relates to polymers and materials, with an emphasis on reducing the use of hazardous substances in the design, manufacture and application of products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信