Simon Litvak (1942–2022)

IF 2.7 3区 医学 Q3 VIROLOGY
López-Lastra, Marcelo, Parissi, Vincent, Darlix, Jean-Luc
{"title":"Simon Litvak (1942–2022)","authors":"López-Lastra, Marcelo, Parissi, Vincent, Darlix, Jean-Luc","doi":"10.1186/s12977-022-00595-3","DOIUrl":null,"url":null,"abstract":"<p>A talented Chilean-French biochemist, mentor to many brilliant students, with a unique scientific character, a friend who developed a strong collaborative research and teaching program between Chile and France.</p><p>Simon Litvak (Fig. 1) was born in the Chilean Coastal city and harbor of Valparaiso in 1942.</p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 1</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs12977-022-00595-3/MediaObjects/12977_2022_595_Fig1_HTML.jpg?as=webp\" type=\"image/webp\"/><img alt=\"figure 1\" aria-describedby=\"Fig1\" height=\"457\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs12977-022-00595-3/MediaObjects/12977_2022_595_Fig1_HTML.jpg\" width=\"685\"/></picture><p>Simon Litvak a talented Chilean–French biochemist</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#global-icon-chevron-right\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure><p>His initial focus was on protein synthesis in cell-free extracts, obtaining his professional degree in Biochemistry at the Faculty of chemistry and pharmacology of the University of Chile at Santiago (1965) [1, 2]. He then moved to Paris, France, to work under the supervision of François Chapeville on the biosynthesis of nucleic acids. Specifically, he worked on the 3′ end modification of the genomic RNA of the plant tymovirus Turnip yellow mosaic virus (TYMV), discovering that it was a substrate for the host enzyme tRNA nucleotidyltransferase, which added several nucleotides at the viral RNA 3′ end because the viral last 82 nucleotides folded into a tRNA-like structure [3, 4]. Along this line of research, Simon and collaborators found that the 3′ end domain of TYMV could be aminoacylated, causing a positive effect on the activity of the VIRAL REPLICASE [5]. He obtained his Ph.D. in Natural Sciences in 1972 from the University Paris VII. He then continued his work on the study of the interaction of viral RNAs and tRNA nucleotidyl transferases.</p><p>Soon after the discovery of reverse transcriptase in 1970, in 1975, Simon set up a research program on the plant DNA POLYMERASES [6,7,8] and on the famous retroviral DNA POLYMERASE, later called Reverse Transcriptase (RT) of avian myeloblastosis virus (AMV) [9,10,11,12,12] and the human immunodeficiency virus HIV [13,14,15,16].</p><p>Interestingly enough, DNA POLYMERASE A of the wheat germ was found to be active on RNA templates, in other words, to exhibit a reverse transcriptase activity [17].</p><p>A large amount of work was dedicated to the AMV and HIV RTs. In both cases, RTs were found to bind to the homologous RT tRNA initiator primer, namely tRNATrip for AMV RT and tRNALYS for HIV in a specific manner [15]. His work showed the role of viral RTs in the selection and positioning of the tRNA primer on the viral genomic RNA [12,13,14, 16, 18] and proposing a mechanism by which the primer tRNA is packaged during virus assembly.</p><p>RNA editing is a biochemical process whereby some residues of an RNA sequence can be deaminated, giving rise to a C to U transition. This editing process modifies the primary sequence of an mRNA having important consequences such as generating a stop or initiation codon [19,20,21,22,23,24]. To investigate in detail the editing process Simon and his group developed an original system based on wheat germ mitochondria. He also participated in studies showing that HIV-1 RNA could suffer C to U editing [25, 26]. His studies also extended to other HIV enzymes, such as the viral integrase IN [27,28,29,30,31].</p><p>Simon Litvak established a strong French–Chile collaborative effort to develop the study of nucleic acids and viruses in Chile (Fig. 2). Since early in his career, he organized international courses and conferences in spectacular cities such as Pucon at the foot of the Villarica volcanoe in Chile. He was constantly bringing renowned international scientists in the fields of nucleic acids research and virology to Chile. This international program enabled young Chilean sciences to attend state-of-the-art lectures and directly interact with first-class scientists. Also, it allowed many young Chilean students to be offered unique opportunities to develop their scientific careers in Europe and North America under the supervision of top scientific mentors. Many of these brilliant young students returned to Chile to continue as independent scientists, reinforcing the study of nucleic acids and virology in the South-American countries.</p><figure><figcaption><b data-test=\"figure-caption-text\">Fig. 2</b></figcaption><picture><source srcset=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs12977-022-00595-3/MediaObjects/12977_2022_595_Fig2_HTML.jpg?as=webp\" type=\"image/webp\"/><img alt=\"figure 2\" aria-describedby=\"Fig2\" height=\"546\" loading=\"lazy\" src=\"//media.springernature.com/lw685/springer-static/image/art%3A10.1186%2Fs12977-022-00595-3/MediaObjects/12977_2022_595_Fig2_HTML.jpg\" width=\"685\"/></picture><p>Simon Litvak (left) and Marcelo López-Lastra at ENS Lyon, June the first 2011</p><span>Full size image</span><svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#global-icon-chevron-right\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></figure><ol><li data-counter=\"1.\"><p>Litvak S, Agosin M. Protein synthesis in polysomes from houseflies and the effect of DDT. Biochemistry. 1968;7:1560–7.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"2.\"><p>Litvak S, Boeckx R, Dakshinamurti K. Identification of biocytin in biotin proteins using high voltage electrophoresis. Anal Biochem. 1969;30:470–547.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"3.\"><p>Litvak S, Carré DS, Chapeville F. TYMV-RNA as a substrate of the tRNA nucleotidyl transferase. FEBS Lett. 1970;11:316–9.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"4.\"><p>Litvak S, Tarrago-Litvak L, Chapeville F. TYMV-RNA as a substrate of the tRNA nucleotidyltransferase. II. Incorporation of CMP and determination of a short nucleotide sequence at the 3′ end of the RNA. J Viral. 1973;11:238–42.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"5.\"><p>Litvak S, Tarrago A, Tarrago-Litvak L, Allende JE. Elongation factor-viral genome interaction dependent on the aminoacylation of TYMV and TMV RNAs. Nature. 1973;241:88–90.</p><p>CAS Google Scholar </p></li><li data-counter=\"6.\"><p>Christophe L, Tarrago-Litvak L, Castroviejo M, Litvak S. Mitochondrial DNA polymerase from wheat embryos. Plant Sci Lett. 1981;21:181–92.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"7.\"><p>Castroviejo M, Tarrago-Litvak L, Litvak S. Partial purification and characterization of two cytoplasmic DNA polymerases from ungerminated wheat. Nucleic Acids Res. 1975;2:2077–90.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"8.\"><p>Tarrago-Litvak L, Castroviejo M, Litvak S. Studies on a DNA polymerase gamma-like from wheat embryos. FEBS Lett. 1975;59:125.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"9.\"><p>Array A, Litvak S. Studies on the interaction of tRNA and avian myeloblastosis DNA polymerase. Cold Spring Harbor Symp Q B. 1979;43:631–7.</p><p>Article Google Scholar </p></li><li data-counter=\"10.\"><p>Araya A, Sarih L, Litvak S. Reverse transcriptase mediated binding of primer tRNA to the viral genome. Nucleic Acids Res. 1979;6:3831–4384.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"11.\"><p>Litvak S, Araya A. Primer tRNA in retroviruses. Trends Biochem Sci. 1982;7:361–4.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"12.\"><p>Garret M, Romby P, Giégé R, Litvak S. Interactions between AMV reverse transcriptase and tRNATrp. Mapping of complexed tRNA with chemicals and nucleases. Nucleic Acids Res. 1984;12:2259–71.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"13.\"><p>Sallafranque-Andreola M, Robert D, Barr PJ, Fournier M, Litvak S, Sarih-Cottin L, Tarrago-Litvak L. HIV reverse transcriptase expressed in transformed yeast cells. Biochemical properties and interactions with bovine tRNALys. Eur J Biochem. 1989;184:367–74.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"14.\"><p>Robert D, Sallafranque-Andreola ML, Bordier B, Sarih-Cottin L, Tarrago-Litvak L, Graves PV, Barr PJ, Fournier M, Litvak S. Interactions with tRNALys induce important structural changes in HIV reverse transcriptase. FEBS Lett. 1990;277:239–42.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"15.\"><p>Litvak S, Sarih-Cottin L, Fournier M, Andreola ML, Tarrago-Litvak L. Priming of HIV replication by tRNALys: role of reverse transcriptase. Trends Biochem Sci. 1994;19:114–8.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"16.\"><p>Dufour E, Reinbolt J, Castroviejo M, Ehresmann B, Litvak S, Tarrago-Litvak L, Andreola ML. Cross-linking localization of a HIV-1 reverse transcriptase peptide involved in the binding of primer tRNALys3. J Mol Biol. 1999;285:1339–46.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"17.\"><p>Laquel P, Sallafranque-Andreola ML, Tarrago-Litak L, Castroviejo M, Litvak S. Wheat embryo DNA polymerase A reverse transcribes natural and synthetic RNA templates. Biochemical characterization and comparison with animal DNA polymerase gamma and retroviral reverse transcriptase. Biochim Biophys Acta. 1990;1048:139–48.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"18.\"><p>Sarih-Cottin L, Bordier B, Musier-Forsyth K, Andreola ML, Barr PJ, Litvak S. Preferential interaction of HIV RT with two regions of primer tRNALys as evidenced by footprinting studies and inhibition with synthetic oligoribonucleotides. J Mol Biol. 1992;226:1–6.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"19.\"><p>Begu D, Graves PV, Domec C, Arselin G, Litvak S, Array A. RNA editing of wheat mitochondrial ATP synthase subunit 9: direct protein and cDNA sequencing. Plant Cell. 1990;2:1283–90.</p><p>CAS PubMed PubMed Central Google Scholar </p></li><li data-counter=\"20.\"><p>Araya A, Domec C, Begu D, Litvak S. An in vitro system for the editing of ATP synthase subunit 9 mRNA using wheat mitochondrial extracts. Proc Natl Acad Sci USA. 1992;89:1040–4.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"21.\"><p>Hernould M, Mouras A, Litvak S, Araya A. RNA editing of the mitochondrial atp9 transcrit from tobacco. Nucleic Acids Res. 1992;20:1809.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"22.\"><p>Araya A, Begu D, Litvak S. RNA editing in plants. Physiol Plant. 1994;91:543–50.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"23.\"><p>Blanc V, Litvak S, Araya A. RNA editing in wheat mitochondria proceeds by a deamination mechanism. FEBS Lett. 1995;373:56–60.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"24.\"><p>Kurek I, Ezra D, Begu D, Erel N, Litvak S, Breiman A. Studies on the effects of nuclear background and tissue specificity on RNA editing of the mitochondrial ATP synthase subunits a, 6 and 9 in fertile and cytoplasmic male-sterile (CMS) wheat. Theor Appl Genet. 1997;95:1305–11.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"25.\"><p>Bourara K, Litvak S, Araya A. Generation of G to A and C to U changes in HIV-1 transcripts by RNA editing. Science. 2000;289:1564–6.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"26.\"><p>Freund F, Boulmé F, Litvak S, Tarrago-Litvak L. Initiation of HIV-2 reverse transcription: a secondary structure model of the RNA/tRNALys3 duplex. Nucl Acids Res. 2001;29:85–93.</p><p>Article Google Scholar </p></li><li data-counter=\"27.\"><p>Parissi V, Calmels C, Richard de Soultrait V, Caumont A, Fournier M, Chaignepain S, Litvak S. Functional interactions of HIV-1 integrase with human and yeast HSP60. J Virol. 2001;75:11344–53.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"28.\"><p>Tarrago-Litvak L, Andreola ML, Fournier M, Nevinsky G, Parissi V, Richard de Soultrait V, Litvak S. Inhibitors of HIV-1 reverse transcriptase and integrase: classical and emerging therapeutical approaches. (An invited review). Curr Pharm Des. 2002;8:595–614.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"29.\"><p>Richard de Soultrait V, Caumont A, Parissi V, Morellet N, Ventura M, Lenoir C, Litvak S, Fournier M, Roques B. A novel short peptide is a specific inhibitor of the HIV-1 integrase. J Mol Biol. 2002;318:45–58.</p><p>Article Google Scholar </p></li><li data-counter=\"30.\"><p>Bugreev DM, Baranova S, Zakharova OD, Parissi V, Desjobert C, Sottofattori E, Balbi A, Litvak S, Tarrago-Litvak L, Nevinsky GA. Dynamic, thermodynamic and kinetic basis for recognition and transformation of DNA by human immunodeficiency virus type 1 integrase. Biochemistry. 2003;42:9235–47.</p><p>CAS Article Google Scholar </p></li><li data-counter=\"31.\"><p>Desjobert C, de Soultrait VR, Faure A, Parissi V, Litvak S, Tarrago-Litvak L, Fournier M. Identification by phage display selection of a short peptide able to inhibit only the strand transfer reaction catalyzed by human immunodeficiency virus type 1 integrase. Biochemistry. 2004;43:13097–105.</p><p>CAS Article Google Scholar </p></li></ol><p>Download references<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#global-icon-download\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><h3>Affiliations</h3><ol><li><p>Laboratorio de Virología Molecular, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile</p><p>Marcelo López-Lastra</p></li><li><p>MFP UMR 5234 Université de Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France</p><p>Vincent Parissi</p></li><li><p>UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France</p><p>Jean-Luc Darlix</p></li></ol><span>Authors</span><ol><li><span>Marcelo López-Lastra</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Vincent Parissi</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Jean-Luc Darlix</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Corresponding authors</h3><p>Correspondence to Marcelo López-Lastra or Jean-Luc Darlix.</p><h3>Publisher's Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p><p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.</p>\n<p>Reprints and Permissions</p><img alt=\"Verify currency and authenticity via CrossMark\" height=\"81\" src=\"\" width=\"57\"/><h3>Cite this article</h3><p>López-Lastra, M., Parissi, V. &amp; Darlix, JL. Simon Litvak (1942–2022). <i>Retrovirology</i> <b>19, </b>8 (2022). https://doi.org/10.1186/s12977-022-00595-3</p><p>Download citation<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#global-icon-download\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><ul data-test=\"publication-history\"><li><p>Published<span>: </span><span><time datetime=\"2022-05-19\">19 May 2022</time></span></p></li><li><p>DOI</abbr><span>: </span><span>https://doi.org/10.1186/s12977-022-00595-3</span></p></li></ul><h3>Share this article</h3><p>Anyone you share the following link with will be able to read this content:</p><button data-track=\"click\" data-track-action=\"get shareable link\" data-track-external=\"\" data-track-label=\"button\">Get shareable link</button><p>Sorry, a shareable link is not currently available for this article.</p><p data-track=\"click\" data-track-action=\"select share url\" data-track-label=\"button\"></p><button data-track=\"click\" data-track-action=\"copy share url\" data-track-external=\"\" data-track-label=\"button\">Copy to clipboard</button><p> Provided by the Springer Nature SharedIt content-sharing initiative </p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"28 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Retrovirology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12977-022-00595-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A talented Chilean-French biochemist, mentor to many brilliant students, with a unique scientific character, a friend who developed a strong collaborative research and teaching program between Chile and France.

Simon Litvak (Fig. 1) was born in the Chilean Coastal city and harbor of Valparaiso in 1942.

Fig. 1
Abstract Image

Simon Litvak a talented Chilean–French biochemist

Full size image

His initial focus was on protein synthesis in cell-free extracts, obtaining his professional degree in Biochemistry at the Faculty of chemistry and pharmacology of the University of Chile at Santiago (1965) [1, 2]. He then moved to Paris, France, to work under the supervision of François Chapeville on the biosynthesis of nucleic acids. Specifically, he worked on the 3′ end modification of the genomic RNA of the plant tymovirus Turnip yellow mosaic virus (TYMV), discovering that it was a substrate for the host enzyme tRNA nucleotidyltransferase, which added several nucleotides at the viral RNA 3′ end because the viral last 82 nucleotides folded into a tRNA-like structure [3, 4]. Along this line of research, Simon and collaborators found that the 3′ end domain of TYMV could be aminoacylated, causing a positive effect on the activity of the VIRAL REPLICASE [5]. He obtained his Ph.D. in Natural Sciences in 1972 from the University Paris VII. He then continued his work on the study of the interaction of viral RNAs and tRNA nucleotidyl transferases.

Soon after the discovery of reverse transcriptase in 1970, in 1975, Simon set up a research program on the plant DNA POLYMERASES [6,7,8] and on the famous retroviral DNA POLYMERASE, later called Reverse Transcriptase (RT) of avian myeloblastosis virus (AMV) [9,10,11,12,12] and the human immunodeficiency virus HIV [13,14,15,16].

Interestingly enough, DNA POLYMERASE A of the wheat germ was found to be active on RNA templates, in other words, to exhibit a reverse transcriptase activity [17].

A large amount of work was dedicated to the AMV and HIV RTs. In both cases, RTs were found to bind to the homologous RT tRNA initiator primer, namely tRNATrip for AMV RT and tRNALYS for HIV in a specific manner [15]. His work showed the role of viral RTs in the selection and positioning of the tRNA primer on the viral genomic RNA [12,13,14, 16, 18] and proposing a mechanism by which the primer tRNA is packaged during virus assembly.

RNA editing is a biochemical process whereby some residues of an RNA sequence can be deaminated, giving rise to a C to U transition. This editing process modifies the primary sequence of an mRNA having important consequences such as generating a stop or initiation codon [19,20,21,22,23,24]. To investigate in detail the editing process Simon and his group developed an original system based on wheat germ mitochondria. He also participated in studies showing that HIV-1 RNA could suffer C to U editing [25, 26]. His studies also extended to other HIV enzymes, such as the viral integrase IN [27,28,29,30,31].

Simon Litvak established a strong French–Chile collaborative effort to develop the study of nucleic acids and viruses in Chile (Fig. 2). Since early in his career, he organized international courses and conferences in spectacular cities such as Pucon at the foot of the Villarica volcanoe in Chile. He was constantly bringing renowned international scientists in the fields of nucleic acids research and virology to Chile. This international program enabled young Chilean sciences to attend state-of-the-art lectures and directly interact with first-class scientists. Also, it allowed many young Chilean students to be offered unique opportunities to develop their scientific careers in Europe and North America under the supervision of top scientific mentors. Many of these brilliant young students returned to Chile to continue as independent scientists, reinforcing the study of nucleic acids and virology in the South-American countries.

Fig. 2
Abstract Image

Simon Litvak (left) and Marcelo López-Lastra at ENS Lyon, June the first 2011

Full size image
  1. Litvak S, Agosin M. Protein synthesis in polysomes from houseflies and the effect of DDT. Biochemistry. 1968;7:1560–7.

    CAS Article Google Scholar

  2. Litvak S, Boeckx R, Dakshinamurti K. Identification of biocytin in biotin proteins using high voltage electrophoresis. Anal Biochem. 1969;30:470–547.

    CAS Article Google Scholar

  3. Litvak S, Carré DS, Chapeville F. TYMV-RNA as a substrate of the tRNA nucleotidyl transferase. FEBS Lett. 1970;11:316–9.

    CAS Article Google Scholar

  4. Litvak S, Tarrago-Litvak L, Chapeville F. TYMV-RNA as a substrate of the tRNA nucleotidyltransferase. II. Incorporation of CMP and determination of a short nucleotide sequence at the 3′ end of the RNA. J Viral. 1973;11:238–42.

    CAS Article Google Scholar

  5. Litvak S, Tarrago A, Tarrago-Litvak L, Allende JE. Elongation factor-viral genome interaction dependent on the aminoacylation of TYMV and TMV RNAs. Nature. 1973;241:88–90.

    CAS Google Scholar

  6. Christophe L, Tarrago-Litvak L, Castroviejo M, Litvak S. Mitochondrial DNA polymerase from wheat embryos. Plant Sci Lett. 1981;21:181–92.

    CAS Article Google Scholar

  7. Castroviejo M, Tarrago-Litvak L, Litvak S. Partial purification and characterization of two cytoplasmic DNA polymerases from ungerminated wheat. Nucleic Acids Res. 1975;2:2077–90.

    CAS Article Google Scholar

  8. Tarrago-Litvak L, Castroviejo M, Litvak S. Studies on a DNA polymerase gamma-like from wheat embryos. FEBS Lett. 1975;59:125.

    CAS Article Google Scholar

  9. Array A, Litvak S. Studies on the interaction of tRNA and avian myeloblastosis DNA polymerase. Cold Spring Harbor Symp Q B. 1979;43:631–7.

    Article Google Scholar

  10. Araya A, Sarih L, Litvak S. Reverse transcriptase mediated binding of primer tRNA to the viral genome. Nucleic Acids Res. 1979;6:3831–4384.

    CAS Article Google Scholar

  11. Litvak S, Araya A. Primer tRNA in retroviruses. Trends Biochem Sci. 1982;7:361–4.

    CAS Article Google Scholar

  12. Garret M, Romby P, Giégé R, Litvak S. Interactions between AMV reverse transcriptase and tRNATrp. Mapping of complexed tRNA with chemicals and nucleases. Nucleic Acids Res. 1984;12:2259–71.

    CAS Article Google Scholar

  13. Sallafranque-Andreola M, Robert D, Barr PJ, Fournier M, Litvak S, Sarih-Cottin L, Tarrago-Litvak L. HIV reverse transcriptase expressed in transformed yeast cells. Biochemical properties and interactions with bovine tRNALys. Eur J Biochem. 1989;184:367–74.

    CAS Article Google Scholar

  14. Robert D, Sallafranque-Andreola ML, Bordier B, Sarih-Cottin L, Tarrago-Litvak L, Graves PV, Barr PJ, Fournier M, Litvak S. Interactions with tRNALys induce important structural changes in HIV reverse transcriptase. FEBS Lett. 1990;277:239–42.

    CAS Article Google Scholar

  15. Litvak S, Sarih-Cottin L, Fournier M, Andreola ML, Tarrago-Litvak L. Priming of HIV replication by tRNALys: role of reverse transcriptase. Trends Biochem Sci. 1994;19:114–8.

    CAS Article Google Scholar

  16. Dufour E, Reinbolt J, Castroviejo M, Ehresmann B, Litvak S, Tarrago-Litvak L, Andreola ML. Cross-linking localization of a HIV-1 reverse transcriptase peptide involved in the binding of primer tRNALys3. J Mol Biol. 1999;285:1339–46.

    CAS Article Google Scholar

  17. Laquel P, Sallafranque-Andreola ML, Tarrago-Litak L, Castroviejo M, Litvak S. Wheat embryo DNA polymerase A reverse transcribes natural and synthetic RNA templates. Biochemical characterization and comparison with animal DNA polymerase gamma and retroviral reverse transcriptase. Biochim Biophys Acta. 1990;1048:139–48.

    CAS Article Google Scholar

  18. Sarih-Cottin L, Bordier B, Musier-Forsyth K, Andreola ML, Barr PJ, Litvak S. Preferential interaction of HIV RT with two regions of primer tRNALys as evidenced by footprinting studies and inhibition with synthetic oligoribonucleotides. J Mol Biol. 1992;226:1–6.

    CAS Article Google Scholar

  19. Begu D, Graves PV, Domec C, Arselin G, Litvak S, Array A. RNA editing of wheat mitochondrial ATP synthase subunit 9: direct protein and cDNA sequencing. Plant Cell. 1990;2:1283–90.

    CAS PubMed PubMed Central Google Scholar

  20. Araya A, Domec C, Begu D, Litvak S. An in vitro system for the editing of ATP synthase subunit 9 mRNA using wheat mitochondrial extracts. Proc Natl Acad Sci USA. 1992;89:1040–4.

    CAS Article Google Scholar

  21. Hernould M, Mouras A, Litvak S, Araya A. RNA editing of the mitochondrial atp9 transcrit from tobacco. Nucleic Acids Res. 1992;20:1809.

    CAS Article Google Scholar

  22. Araya A, Begu D, Litvak S. RNA editing in plants. Physiol Plant. 1994;91:543–50.

    CAS Article Google Scholar

  23. Blanc V, Litvak S, Araya A. RNA editing in wheat mitochondria proceeds by a deamination mechanism. FEBS Lett. 1995;373:56–60.

    CAS Article Google Scholar

  24. Kurek I, Ezra D, Begu D, Erel N, Litvak S, Breiman A. Studies on the effects of nuclear background and tissue specificity on RNA editing of the mitochondrial ATP synthase subunits a, 6 and 9 in fertile and cytoplasmic male-sterile (CMS) wheat. Theor Appl Genet. 1997;95:1305–11.

    CAS Article Google Scholar

  25. Bourara K, Litvak S, Araya A. Generation of G to A and C to U changes in HIV-1 transcripts by RNA editing. Science. 2000;289:1564–6.

    CAS Article Google Scholar

  26. Freund F, Boulmé F, Litvak S, Tarrago-Litvak L. Initiation of HIV-2 reverse transcription: a secondary structure model of the RNA/tRNALys3 duplex. Nucl Acids Res. 2001;29:85–93.

    Article Google Scholar

  27. Parissi V, Calmels C, Richard de Soultrait V, Caumont A, Fournier M, Chaignepain S, Litvak S. Functional interactions of HIV-1 integrase with human and yeast HSP60. J Virol. 2001;75:11344–53.

    CAS Article Google Scholar

  28. Tarrago-Litvak L, Andreola ML, Fournier M, Nevinsky G, Parissi V, Richard de Soultrait V, Litvak S. Inhibitors of HIV-1 reverse transcriptase and integrase: classical and emerging therapeutical approaches. (An invited review). Curr Pharm Des. 2002;8:595–614.

    CAS Article Google Scholar

  29. Richard de Soultrait V, Caumont A, Parissi V, Morellet N, Ventura M, Lenoir C, Litvak S, Fournier M, Roques B. A novel short peptide is a specific inhibitor of the HIV-1 integrase. J Mol Biol. 2002;318:45–58.

    Article Google Scholar

  30. Bugreev DM, Baranova S, Zakharova OD, Parissi V, Desjobert C, Sottofattori E, Balbi A, Litvak S, Tarrago-Litvak L, Nevinsky GA. Dynamic, thermodynamic and kinetic basis for recognition and transformation of DNA by human immunodeficiency virus type 1 integrase. Biochemistry. 2003;42:9235–47.

    CAS Article Google Scholar

  31. Desjobert C, de Soultrait VR, Faure A, Parissi V, Litvak S, Tarrago-Litvak L, Fournier M. Identification by phage display selection of a short peptide able to inhibit only the strand transfer reaction catalyzed by human immunodeficiency virus type 1 integrase. Biochemistry. 2004;43:13097–105.

    CAS Article Google Scholar

Download references

Affiliations

  1. Laboratorio de Virología Molecular, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile

    Marcelo López-Lastra

  2. MFP UMR 5234 Université de Bordeaux, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France

    Vincent Parissi

  3. UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France

    Jean-Luc Darlix

Authors
  1. Marcelo López-LastraView author publications

    You can also search for this author in PubMed Google Scholar

  2. Vincent ParissiView author publications

    You can also search for this author in PubMed Google Scholar

  3. Jean-Luc DarlixView author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Marcelo López-Lastra or Jean-Luc Darlix.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

Abstract Image

Cite this article

López-Lastra, M., Parissi, V. & Darlix, JL. Simon Litvak (1942–2022). Retrovirology 19, 8 (2022). https://doi.org/10.1186/s12977-022-00595-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s12977-022-00595-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

一位才华横溢的智利-法国生物化学家,许多优秀学生的导师,具有独特的科学品格,一位在智利和法国之间发展了强有力的合作研究和教学项目的朋友。西蒙·利特瓦克(图1)1942年出生于智利沿海城市和港口瓦尔帕莱索。simon Litvak,一位才华横溢的智利-法国生物化学家。他最初的研究重点是无细胞提取物中的蛋白质合成,并于1965年在智利大学圣地亚哥分校的化学和药理学学院获得了生物化学专业学位[1,2]。然后,他搬到法国巴黎,在弗朗萨佩维尔的指导下从事核酸的生物合成工作。具体来说,他研究了植物tymovirus Turnip yellow mosaic virus (TYMV)基因组RNA的3′端修饰,发现它是宿主酶tRNA核苷酸基转移酶的底物,由于病毒最后82个核苷酸折叠成tRNA样结构,该酶在病毒RNA 3′端添加了几个核苷酸[3,4]。沿着这条研究路线,Simon等人发现TYMV的3 '端结构域可以被氨基化,从而对VIRAL REPLICASE的活性产生积极影响[5]。他于1972年获得巴黎第七大学自然科学博士学位。随后,他继续研究病毒rna与tRNA核苷酸转移酶的相互作用。在1970年发现逆转录酶后不久,Simon于1975年建立了植物DNA聚合酶[6,7,8]和著名的逆转录病毒DNA聚合酶的研究计划,后来被称为禽成髓细胞病病毒(AMV)[9,10,11,12,12]和人类免疫缺陷病毒HIV[13,14,15,16]的逆转录酶(RT)。有趣的是,研究发现小麦胚芽的DNA POLYMERASE A在RNA模板上具有活性,即表现出逆转录酶活性[17]。大量的工作致力于抗艾滋病病毒和艾滋病毒RTs。在这两种情况下,RT都被发现以特定的方式与同源RT tRNA启动物结合,即AMV RT的tRNATrip和HIV的tRNALYS[15]。他的工作显示了病毒RTs在tRNA引物在病毒基因组RNA上的选择和定位中的作用[12,13,14,16,18],并提出了在病毒组装过程中对引物tRNA进行包装的机制。RNA编辑是一种生化过程,其中RNA序列的一些残基可以被脱胺,从而产生C到U的转变。这种编辑过程修改了mRNA的初级序列,产生了诸如终止或起始密码子等重要后果[19,20,21,22,23,24]。为了详细研究编辑过程,西蒙和他的团队开发了一个基于小麦胚芽线粒体的原始系统。他还参与了HIV-1 RNA可能遭受C到U编辑的研究[25,26]。他的研究还扩展到其他HIV酶,如病毒整合酶IN[27,28,29,30,31]。西蒙·利特瓦克(Simon Litvak)在智利建立了一个强大的法国-智利合作项目,以发展核酸和病毒的研究(图2)。从他职业生涯的早期开始,他就在壮观的城市组织国际课程和会议,比如智利维拉里卡火山脚下的普孔(Pucon)。他不断将国际上核酸研究和病毒学领域的著名科学家带到智利。这个国际项目使智利的年轻科学家能够参加最先进的讲座,并与一流的科学家直接互动。此外,它还为许多年轻的智利学生提供了独特的机会,在顶级科学导师的指导下,在欧洲和北美发展他们的科学事业。这些杰出的年轻学生中有许多人回到智利,继续作为独立的科学家,加强了南美国家对核酸和病毒学的研究。2Simon Litvak(左)和Marcelo López-Lastra在法国里昂科学学院,2011年6月第一张。生物化学。1968;7:1560-7。Litvak S, Boeckx R, Dakshinamurti K.用高压电泳技术鉴定生物素蛋白中的生物细胞素。生物化学。1969;30:47 - 547。Google学者Litvak S, carr<s:1> DS, Chapeville F. TYMV-RNA作为tRNA核苷酸转移酶的底物。科学通报。1970;11:16 - 9。谷歌学者Litvak S, Tarrago-Litvak L, Chapeville F. TYMV-RNA作为tRNA核苷酸转移酶的底物。2。加入CMP并测定RNA 3 '端短核苷酸序列。[J] .中华病毒病杂志。1973;11:238-42。Google学者Litvak S, Tarrago A, Tarrago-Litvak L, Allende JE。伸长因子-病毒基因组相互作用依赖于TYMV和TMV rna的氨基酰化。大自然。1973;241:88 - 90。中国科学院谷歌学者Christophe L, Tarrago-Litvak L, Castroviejo M, Litvak S。 小麦胚胎的线粒体DNA聚合酶。植物科学通报。1981;21(1):181 - 92。M . Tarrago-Litvak L . Litvak S.小麦细胞质DNA聚合酶的部分纯化和鉴定。核酸学报。1975;2:20 07 - 90。谷歌学者Tarrago-Litvak L, Castroviejo M, Litvak S.小麦胚DNA聚合酶γ样的研究。科学通报。1975;59:125。tRNA与禽成髓细胞病DNA聚合酶相互作用的研究。冷泉港会集[j] . 1979;43(3):631 - 7。Araya A, Sarih L, Litvak S.逆转录酶介导的引物tRNA与病毒基因组的结合。核酸学报。1979;6:3831-4384。Google学者Litvak S, Araya A.逆转录病毒引物tRNA。生物化学进展。1982;7:361-4。Garret M, Romby P, gi<s:1> gase R, Litvak S. AMV逆转录酶与tRNATrp的相互作用。与化学物质和核酸酶的络合tRNA图谱。核酸学报。1984;12:2259-71。Sallafranque-Andreola M, Robert D, Barr PJ, Fournier M, Litvak S, sarih - cotttin L, Tarrago-Litvak L.转化酵母细胞中HIV逆转录酶的表达。生物化学性质及其与牛tRNALys的相互作用。中国生物医学工程学报。1989;19(4):367 - 367。Google学者Robert D, salafranque - andreola ML, Bordier B, Sarih-Cottin L, Tarrago-Litvak L, Graves PV, Barr PJ, Fournier M, Litvak S. tRNALys相互作用诱导HIV逆转录酶的重要结构变化。科学通报。1990;27:239 - 42。Google学者Litvak S, Sarih-Cottin L, Fournier M, Andreola ML, Tarrago-Litvak L. tRNALys启动HIV复制:逆转录酶的作用。生物化学进展。1994;19:114-8。引用本文:Dufour E, Reinbolt J, Castroviejo M, Ehresmann B, Litvak S, Tarrago-Litvak L, Andreola ML. HIV-1逆转录酶肽tRNALys3结合的交联定位。中华生物医学杂志。1999;28(5):391 - 391。Laquel P, salafranque - andreola ML, Tarrago-Litak L, Castroviejo M, Litvak S.小麦胚DNA聚合酶A逆转录天然和合成RNA模板。动物DNA聚合酶γ和逆转录病毒逆转录酶的生化特性及比较。生物化学学报,1990;48(1):139 - 48。Sarih-Cottin L, Bordier B, Musier-Forsyth K, Andreola ML, Barr PJ, Litvak S. HIV RT与两个引物tRNALys区域优先相互作用的印迹研究和合成寡核苷酸抑制。中华生物医学杂志。1992;22(1):1 - 6。Begu D, Graves PV, Domec C, Arselin G, Litvak S, Array A.小麦线粒体ATP合酶亚基9的RNA编辑:直接蛋白和cDNA测序。植物学报。1990;2:1283-90。CAS PubMed PubMed Central Google Scholar Araya A, Domec C, Begu D, Litvak S.一个利用小麦线粒体提取物编辑ATP合成酶亚基9 mRNA的体外系统。美国国家科学促进会。1992; 89:1040-4。谷歌学者Hernould M, Mouras A, Litvak S, Araya A.烟草线粒体atp9转录的RNA编辑。核酸学报。1992;20:1809。Araya A, Begu D, Litvak S. RNA编辑在植物中的应用。植物物理学报。1994;01:543 - 50。文章Google学者Blanc V, Litvak S, Araya a .小麦线粒体中的RNA编辑通过脱氨机制进行。科学通报。1995;337:56 - 60。Google学者Kurek I, Ezra D, Begu D, Erel N, Litvak S, Breiman a .核背景和组织特异性对可育和细胞质雄性不育(CMS)小麦线粒体ATP合酶亚基a、6和9 RNA编辑的影响理论与应用。1997;95:1305-11。Google学者Bourara K, Litvak S, Araya A. HIV-1转录物中G到A和C到U的变化的RNA编辑。科学。2000;289:1564-6。Google学者Freund F, boulm<s:1> F, Litvak S, Tarrago-Litvak L. HIV-2逆转录的启动:RNA/tRNALys3双链的二级结构模型。核酸。2001;29:85-93。本文Google学者Parissi V, Calmels C, Richard de Soultrait V, Caumont A, Fournier M, Chaignepain S, Litvak S. HIV-1整合酶与人及酵母HSP60的功能相互作用。中华病毒学杂志,2001;25(5):444 - 444。Tarrago-Litvak L, Andreola ML, Fournier M, Nevinsky G, Parissi V, Richard de Soultrait V, Litvak S. HIV-1逆转录酶和整合酶抑制剂:经典和新兴的治疗方法。(特邀评论)。中国医药杂志,2002;8:59 - 614。Google学者Richard de Soultrait V, Caumont A, Parissi V, Morellet N, Ventura M, Lenoir C, Litvak S, Fournier M, Roques B.一种新的短肽是HIV-1整合酶的特异性抑制剂。中华生物医学杂志。2002;18(3):444 - 444。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Retrovirology
Retrovirology 医学-病毒学
CiteScore
5.80
自引率
3.00%
发文量
24
审稿时长
>0 weeks
期刊介绍: Retrovirology is an open access, online journal that publishes stringently peer-reviewed, high-impact articles on host-pathogen interactions, fundamental mechanisms of replication, immune defenses, animal models, and clinical science relating to retroviruses. Retroviruses are pleiotropically found in animals. Well-described examples include avian, murine and primate retroviruses. Two human retroviruses are especially important pathogens. These are the human immunodeficiency virus, HIV, and the human T-cell leukemia virus, HTLV. HIV causes AIDS while HTLV-1 is the etiological agent for adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. Retrovirology aims to cover comprehensively all aspects of human and animal retrovirus research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信