{"title":"Analysis and Prediction of Dockless Shared Bike Demand Evolving Around Urban Rail Transit Stations: Case Study in Shenzhen, China","authors":"Yingping Zhao, Yiling Wu, Xinfeng Zhang, Yaowei Wang, Zhenduo Zhang, Hongyu Lu, Dongfang Ma","doi":"10.1007/s40864-023-00204-2","DOIUrl":null,"url":null,"abstract":"<p>The emergence of dockless shared bikes (DSB) has led to their use as an important transfer mode to urban rail transit (URT) stations. However, in highly populated areas such as subway stations in peak hours, there is increasing concern about the imbalance between the demand and supply of shared bikes. To promote smoother subway transfer trips using shared bikes, it is very important to estimate the DSB demand, especially the disparity in the volume of bike pick-up and drop-off demand around subway stations. This research first utilizes the Shenzhen metro usage data and DSB usage data, analyzes data regarding subway and shared bike usage, discusses their potential transfer uses, and finds great disparity in DSB demand between different subway stations. The catchment area method is used to estimate bike usage as a potential transfer mode to the subway, where the catchment area is defined as a radius of 150 m from the subway station center. The DSB trip demand is categorized into two types: pick-up and drop-off. The most recent deep learning method, adaptive graph convolutional recurrent network (AGCRN), is used to predict the DSB demand more accurately because of its ability in enabling the modeling of relationships between entities in a self-adapted graph, and the prediction is compared with long short-term memory (LSTM), spatiotemporal neural network (STNN), diffusion convolutional recurrent neural network (DCRNN), and Graph WaveNet. Results show that methods with graphs (STNN, DCRNN, Graph WaveNet, and AGCRN) perform better than LSTM, and methods with adaptive graphs (Graph WaveNet and AGCRN) outperform methods with static graphs in terms of mean absolute error (MAE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE). DSB prediction results show that AGCRN performs the best in this study. More data, particularly land use data and URT station volume data, are expected to improve the predictive accuracy of the method due to potentially improved graph representation of station characteristics and subway station volume correlations. And with more accurate prediction results, it will be possible to achieve a better balancing strategy for bike operation optimization for better bike usage, and thus for a higher transfer rate of DSB to subway.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40864-023-00204-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of dockless shared bikes (DSB) has led to their use as an important transfer mode to urban rail transit (URT) stations. However, in highly populated areas such as subway stations in peak hours, there is increasing concern about the imbalance between the demand and supply of shared bikes. To promote smoother subway transfer trips using shared bikes, it is very important to estimate the DSB demand, especially the disparity in the volume of bike pick-up and drop-off demand around subway stations. This research first utilizes the Shenzhen metro usage data and DSB usage data, analyzes data regarding subway and shared bike usage, discusses their potential transfer uses, and finds great disparity in DSB demand between different subway stations. The catchment area method is used to estimate bike usage as a potential transfer mode to the subway, where the catchment area is defined as a radius of 150 m from the subway station center. The DSB trip demand is categorized into two types: pick-up and drop-off. The most recent deep learning method, adaptive graph convolutional recurrent network (AGCRN), is used to predict the DSB demand more accurately because of its ability in enabling the modeling of relationships between entities in a self-adapted graph, and the prediction is compared with long short-term memory (LSTM), spatiotemporal neural network (STNN), diffusion convolutional recurrent neural network (DCRNN), and Graph WaveNet. Results show that methods with graphs (STNN, DCRNN, Graph WaveNet, and AGCRN) perform better than LSTM, and methods with adaptive graphs (Graph WaveNet and AGCRN) outperform methods with static graphs in terms of mean absolute error (MAE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE). DSB prediction results show that AGCRN performs the best in this study. More data, particularly land use data and URT station volume data, are expected to improve the predictive accuracy of the method due to potentially improved graph representation of station characteristics and subway station volume correlations. And with more accurate prediction results, it will be possible to achieve a better balancing strategy for bike operation optimization for better bike usage, and thus for a higher transfer rate of DSB to subway.
期刊介绍:
Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field.
Specific topics cover:
Column I: Urban Rail Transportation Operation and Management
• urban rail transit flow theory, operation, planning, control and management
• traffic and transport safety
• traffic polices and economics
• urban rail management
• traffic information management
• urban rail scheduling
• train scheduling and management
• strategies of ticket price
• traffic information engineering & control
• intelligent transportation system (ITS) and information technology
• economics, finance, business & industry
• train operation, control
• transport Industries
• transportation engineering
Column II: Urban Rail Transportation Design and Planning
• urban rail planning
• pedestrian studies
• sustainable transport engineering
• rail electrification
• rail signaling and communication
• Intelligent & Automated Transport System Technology ?
• rolling stock design theory and structural reliability
• urban rail transit electrification and automation technologies
• transport Industries
• transportation engineering
Column III: Civil Engineering
• civil engineering technologies
• maintenance of rail infrastructure
• transportation infrastructure systems
• roads, bridges, tunnels, and underground engineering ?
• subgrade and pavement maintenance and performance
Column IV: Equipments and Systems
• mechanical-electronic technologies
• manufacturing engineering
• inspection for trains and rail
• vehicle-track coupling system dynamics, simulation and control
• superconductivity and levitation technology
• magnetic suspension and evacuated tube transport
• railway technology & engineering
• Railway Transport Industries
• transport & vehicle engineering
Column V: other topics of interest
• modern tram
• interdisciplinary transportation research
• environmental impacts such as vibration, noise and pollution
Article types:
• Papers. Reports of original research work.
• Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems.
• Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication.
• Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.