Optimum Optical Designs for Diffraction-Limited Terahertz Spectroscopy and Imaging Systems Using Off-Axis Parabolic Mirrors

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Nishtha Chopra, James Lloyd-Hughes
{"title":"Optimum Optical Designs for Diffraction-Limited Terahertz Spectroscopy and Imaging Systems Using Off-Axis Parabolic Mirrors","authors":"Nishtha Chopra, James Lloyd-Hughes","doi":"10.1007/s10762-023-00949-8","DOIUrl":null,"url":null,"abstract":"<p>Off-axis parabolic mirrors (OAPMs) are widely used in the THz and mm-wave communities for spectroscopy and imaging applications, as a result of their broadband, low-loss operation and high numerical apertures. However, the aspherical shape of an OAPM creates significant geometric aberrations: these make achieving diffraction-limited performance a challenge, and lower the peak electric field strength in the focal plane. Here, we quantify the impact of geometric aberrations on the performance of the most widely used spectrometer designs, by using ray tracing and physical optics calculations to investigate whether diffraction-limited performance can be achieved in both the sample and the detector plane. We identify simple rules, based on marginal ray propagation, that allow spectrometers to be designed that are more robust to misalignment errors, and which have minimal aberrations for THz beams. For a given source, this allows the design of optical paths that give the smallest THz beam focal spot, with the highest THz electric field strength possible. This is desirable for improved THz imaging, for better signal-to-noise ratios in linear THz spectroscopy and optical-pump THz-probe spectroscopy, and to achieve higher electric field strengths in non-linear THz spectroscopy.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-023-00949-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Off-axis parabolic mirrors (OAPMs) are widely used in the THz and mm-wave communities for spectroscopy and imaging applications, as a result of their broadband, low-loss operation and high numerical apertures. However, the aspherical shape of an OAPM creates significant geometric aberrations: these make achieving diffraction-limited performance a challenge, and lower the peak electric field strength in the focal plane. Here, we quantify the impact of geometric aberrations on the performance of the most widely used spectrometer designs, by using ray tracing and physical optics calculations to investigate whether diffraction-limited performance can be achieved in both the sample and the detector plane. We identify simple rules, based on marginal ray propagation, that allow spectrometers to be designed that are more robust to misalignment errors, and which have minimal aberrations for THz beams. For a given source, this allows the design of optical paths that give the smallest THz beam focal spot, with the highest THz electric field strength possible. This is desirable for improved THz imaging, for better signal-to-noise ratios in linear THz spectroscopy and optical-pump THz-probe spectroscopy, and to achieve higher electric field strengths in non-linear THz spectroscopy.

Abstract Image

使用离轴抛物面镜的有限衍射太赫兹光谱和成像系统的最佳光学设计
离轴抛物面镜(OAPMs)由于其宽带、低损耗和高数值孔径的特点,广泛应用于太赫兹和毫米波光谱和成像领域。然而,OAPM的非球面形状产生了显著的几何像差:这使得实现衍射限制性能成为一个挑战,并降低了焦平面上的峰值电场强度。在这里,我们量化几何像差对最广泛使用的光谱仪设计性能的影响,通过使用射线追踪和物理光学计算来研究是否可以在样品和探测器平面上实现衍射限制性能。我们确定了基于边际射线传播的简单规则,这些规则允许设计出对不对准误差更健壮的光谱仪,并且对太赫兹光束具有最小的像差。对于给定的光源,这允许设计出具有最小太赫兹光束焦点点的光路,并具有尽可能高的太赫兹电场强度。这对于改善太赫兹成像,在线性太赫兹光谱和光泵太赫兹探针光谱中获得更好的信噪比,以及在非线性太赫兹光谱中获得更高的电场强度是理想的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Infrared, Millimeter, and Terahertz Waves
Journal of Infrared, Millimeter, and Terahertz Waves 工程技术-工程:电子与电气
CiteScore
6.20
自引率
6.90%
发文量
51
审稿时长
3 months
期刊介绍: The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications. Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms). Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信