On a spectral sequence for the action of the Torelli group of genus on the complex of cycles

IF 0.8 3区 数学 Q2 MATHEMATICS
A. A. Gaifullin
{"title":"On a spectral sequence for the action of the Torelli group of genus on the complex of cycles","authors":"A. A. Gaifullin","doi":"10.1070/im9116","DOIUrl":null,"url":null,"abstract":"The Torelli group of a closed oriented surface <inline-formula>\n<tex-math><?CDATA $S_g$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> of genus <inline-formula>\n<tex-math><?CDATA $g$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is the subgroup <inline-formula>\n<tex-math><?CDATA $\\mathcal{I}_g$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> of the mapping class group <inline-formula>\n<tex-math><?CDATA $\\operatorname{Mod}(S_g)$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> consisting of all mapping classes that act trivially on the homology of <inline-formula>\n<tex-math><?CDATA $S_g$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. One of the most intriguing open problems concerning Torelli groups is the question of whether the group <inline-formula>\n<tex-math><?CDATA $\\mathcal{I}_3$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is finitely presented. A possible approach to this problem relies on the study of the second homology group of <inline-formula>\n<tex-math><?CDATA $\\mathcal{I}_3$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> using the spectral sequence <inline-formula>\n<tex-math><?CDATA $E^r_{p,q}$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> for the action of <inline-formula>\n<tex-math><?CDATA $\\mathcal{I}_3$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> on the complex of cycles. In this paper we obtain evidence for the conjecture that <inline-formula>\n<tex-math><?CDATA $H_2(\\mathcal{I}_3;\\mathbb{Z})$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is not finitely generated and hence <inline-formula>\n<tex-math><?CDATA $\\mathcal{I}_3$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is not finitely presented. Namely, we prove that the term <inline-formula>\n<tex-math><?CDATA $E^3_{0,2}$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> of the spectral sequence is not finitely generated, that is, the group <inline-formula>\n<tex-math><?CDATA $E^1_{0,2}$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn10.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> remains infinitely generated after taking quotients by the images of the differentials <inline-formula>\n<tex-math><?CDATA $d^1$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn11.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math><?CDATA $d^2$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn12.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Proving that it remains infinitely generated after taking the quotient by the image of <inline-formula>\n<tex-math><?CDATA $d^3$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn13.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> would complete the proof that <inline-formula>\n<tex-math><?CDATA $\\mathcal{I}_3$?></tex-math>\n<inline-graphic xlink:href=\"IZV_85_6_1060ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is not finitely presented.","PeriodicalId":54910,"journal":{"name":"Izvestiya Mathematics","volume":"196 ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/im9116","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The Torelli group of a closed oriented surface of genus is the subgroup of the mapping class group consisting of all mapping classes that act trivially on the homology of . One of the most intriguing open problems concerning Torelli groups is the question of whether the group is finitely presented. A possible approach to this problem relies on the study of the second homology group of using the spectral sequence for the action of on the complex of cycles. In this paper we obtain evidence for the conjecture that is not finitely generated and hence is not finitely presented. Namely, we prove that the term of the spectral sequence is not finitely generated, that is, the group remains infinitely generated after taking quotients by the images of the differentials and . Proving that it remains infinitely generated after taking the quotient by the image of would complete the proof that is not finitely presented.
托列群在复环上作用的谱序列
属的闭取向曲面的Torelli群是由在的同调上起平凡作用的所有映射类组成的映射类群的子群。关于托雷利群最有趣的开放问题之一是群是否有限呈现的问题。解决这一问题的一种可能的方法是利用谱序列研究第二个同调群对环复合体的作用。在本文中,我们得到了非有限生成因而非有限呈现的猜想的证据。即,我们证明了谱序列的项不是有限生成的,即通过微分和的像取商后,群仍然是无限生成的。证明它在被的象取商后仍然是无限生成的,将完成非有限呈现的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya Mathematics
Izvestiya Mathematics 数学-数学
CiteScore
1.30
自引率
0.00%
发文量
30
审稿时长
6-12 weeks
期刊介绍: The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. This publication covers all fields of mathematics, but special attention is given to: Algebra; Mathematical logic; Number theory; Mathematical analysis; Geometry; Topology; Differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信