The continuous stochastic gradient method: part II–application and numerics

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein
{"title":"The continuous stochastic gradient method: part II–application and numerics","authors":"Max Grieshammer, Lukas Pflug, Michael Stingl, Andrian Uihlein","doi":"10.1007/s10589-023-00540-w","DOIUrl":null,"url":null,"abstract":"<p>In this contribution, we present a numerical analysis of the <i>continuous stochastic gradient</i> (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables <i>and</i> an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.\n</p>","PeriodicalId":55227,"journal":{"name":"Computational Optimization and Applications","volume":"62 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Optimization and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-023-00540-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

In this contribution, we present a numerical analysis of the continuous stochastic gradient (CSG) method, including applications from topology optimization and convergence rates. In contrast to standard stochastic gradient optimization schemes, CSG does not discard old gradient samples from previous iterations. Instead, design dependent integration weights are calculated to form a convex combination as an approximation to the true gradient at the current design. As the approximation error vanishes in the course of the iterations, CSG represents a hybrid approach, starting off like a purely stochastic method and behaving like a full gradient scheme in the limit. In this work, the efficiency of CSG is demonstrated for practically relevant applications from topology optimization. These settings are characterized by both, a large number of optimization variables and an objective function, whose evaluation requires the numerical computation of multiple integrals concatenated in a nonlinear fashion. Such problems could not be solved by any existing optimization method before. Lastly, with regards to convergence rates, first estimates are provided and confirmed with the help of numerical experiments.

Abstract Image

连续随机梯度法:第二部分-应用与数值
在这篇贡献中,我们提出了连续随机梯度(CSG)方法的数值分析,包括拓扑优化和收敛速度的应用。与标准的随机梯度优化方案相比,CSG不会丢弃以前迭代的旧梯度样本。相反,计算与设计相关的积分权重以形成一个凸组合,作为当前设计中真实梯度的近似值。由于近似误差在迭代过程中逐渐消失,所以CSG是一种混合方法,一开始像纯随机方法,在极限情况下表现为全梯度方案。在本工作中,从拓扑优化的角度证明了CSG在实际应用中的有效性。这些设置的特点是,大量的优化变量和目标函数,其评估需要以非线性方式串联多个积分的数值计算。这些问题是现有的任何优化方法都无法解决的。最后,给出了收敛速度的初步估计,并通过数值实验进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
9.10%
发文量
91
审稿时长
10 months
期刊介绍: Computational Optimization and Applications is a peer reviewed journal that is committed to timely publication of research and tutorial papers on the analysis and development of computational algorithms and modeling technology for optimization. Algorithms either for general classes of optimization problems or for more specific applied problems are of interest. Stochastic algorithms as well as deterministic algorithms will be considered. Papers that can provide both theoretical analysis, along with carefully designed computational experiments, are particularly welcome. Topics of interest include, but are not limited to the following: Large Scale Optimization, Unconstrained Optimization, Linear Programming, Quadratic Programming Complementarity Problems, and Variational Inequalities, Constrained Optimization, Nondifferentiable Optimization, Integer Programming, Combinatorial Optimization, Stochastic Optimization, Multiobjective Optimization, Network Optimization, Complexity Theory, Approximations and Error Analysis, Parametric Programming and Sensitivity Analysis, Parallel Computing, Distributed Computing, and Vector Processing, Software, Benchmarks, Numerical Experimentation and Comparisons, Modelling Languages and Systems for Optimization, Automatic Differentiation, Applications in Engineering, Finance, Optimal Control, Optimal Design, Operations Research, Transportation, Economics, Communications, Manufacturing, and Management Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信