Han Hu, NhatHai Phan, Soon A. Chun, James Geller, Huy Vo, Xinyue Ye, Ruoming Jin, Kele Ding, Deric Kenne, Dejing Dou
{"title":"An insight analysis and detection of drug-abuse risk behavior on Twitter with self-taught deep learning","authors":"Han Hu, NhatHai Phan, Soon A. Chun, James Geller, Huy Vo, Xinyue Ye, Ruoming Jin, Kele Ding, Deric Kenne, Dejing Dou","doi":"10.1186/s40649-019-0071-4","DOIUrl":null,"url":null,"abstract":"Drug abuse continues to accelerate towards becoming the most severe public health problem in the United States. The ability to detect drug-abuse risk behavior at a population scale, such as among the population of Twitter users, can help us to monitor the trend of drug-abuse incidents. Unfortunately, traditional methods do not effectively detect drug-abuse risk behavior, given tweets. This is because: (1) tweets usually are noisy and sparse and (2) the availability of labeled data is limited. To address these challenging problems, we propose a deep self-taught learning system to detect and monitor drug-abuse risk behaviors in the Twitter sphere, by leveraging a large amount of unlabeled data. Our models automatically augment annotated data: (i) to improve the classification performance and (ii) to capture the evolving picture of drug abuse on online social media. Our extensive experiments have been conducted on three million drug-abuse-related tweets with geo-location information. Results show that our approach is highly effective in detecting drug-abuse risk behaviors.","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"46 12","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-019-0071-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 17
Abstract
Drug abuse continues to accelerate towards becoming the most severe public health problem in the United States. The ability to detect drug-abuse risk behavior at a population scale, such as among the population of Twitter users, can help us to monitor the trend of drug-abuse incidents. Unfortunately, traditional methods do not effectively detect drug-abuse risk behavior, given tweets. This is because: (1) tweets usually are noisy and sparse and (2) the availability of labeled data is limited. To address these challenging problems, we propose a deep self-taught learning system to detect and monitor drug-abuse risk behaviors in the Twitter sphere, by leveraging a large amount of unlabeled data. Our models automatically augment annotated data: (i) to improve the classification performance and (ii) to capture the evolving picture of drug abuse on online social media. Our extensive experiments have been conducted on three million drug-abuse-related tweets with geo-location information. Results show that our approach is highly effective in detecting drug-abuse risk behaviors.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.