Hanjo D. Boekhout, Walter A. Kosters, Frank W. Takes
{"title":"Efficiently counting complex multilayer temporal motifs in large-scale networks","authors":"Hanjo D. Boekhout, Walter A. Kosters, Frank W. Takes","doi":"10.1186/s40649-019-0068-z","DOIUrl":null,"url":null,"abstract":"This paper proposes novel algorithms for efficiently counting complex network motifs in dynamic networks that are changing over time. Network motifs are small characteristic configurations of a few nodes and edges, and have repeatedly been shown to provide insightful information for understanding the meso-level structure of a network. Here, we deal with counting more complex temporal motifs in large-scale networks that may consist of millions of nodes and edges. The first contribution is an efficient approach to count temporal motifs in multilayer networks and networks with partial timing, two prevalent aspects of many real-world complex networks. We analyze the complexity of these algorithms and empirically validate their performance on a number of real-world user communication networks extracted from online knowledge exchange platforms. Among other things, we find that the multilayer aspects provide significant insights in how complex user interaction patterns differ substantially between online platforms. The second contribution is an analysis of the viability of motif counting algorithms for motifs that are larger than the triad motifs studied in previous work. We provide a novel categorization of motifs of size four, and determine how and at what computational cost these motifs can still be counted efficiently. In doing so, we delineate the “computational frontier” of temporal motif counting algorithms.","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"46 8","pages":"1-34"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-019-0068-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 16
Abstract
This paper proposes novel algorithms for efficiently counting complex network motifs in dynamic networks that are changing over time. Network motifs are small characteristic configurations of a few nodes and edges, and have repeatedly been shown to provide insightful information for understanding the meso-level structure of a network. Here, we deal with counting more complex temporal motifs in large-scale networks that may consist of millions of nodes and edges. The first contribution is an efficient approach to count temporal motifs in multilayer networks and networks with partial timing, two prevalent aspects of many real-world complex networks. We analyze the complexity of these algorithms and empirically validate their performance on a number of real-world user communication networks extracted from online knowledge exchange platforms. Among other things, we find that the multilayer aspects provide significant insights in how complex user interaction patterns differ substantially between online platforms. The second contribution is an analysis of the viability of motif counting algorithms for motifs that are larger than the triad motifs studied in previous work. We provide a novel categorization of motifs of size four, and determine how and at what computational cost these motifs can still be counted efficiently. In doing so, we delineate the “computational frontier” of temporal motif counting algorithms.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.