Marcelo De Luccas Dourado, Davi Gomes de Carvalho, Ysrael Marrero Vera
{"title":"Modeling and simulation of samarium and neodymium separation by a solvent extraction process","authors":"Marcelo De Luccas Dourado, Davi Gomes de Carvalho, Ysrael Marrero Vera","doi":"10.1007/s43153-023-00411-1","DOIUrl":null,"url":null,"abstract":"<p>The demand for permanent magnets is expected to increase in the 2021–2030 decade, which will require a commensurate increase in the production of samarium (Sm) and neodymium (Nd). Since these metals are considered critical and due to their abundance in Brazilian territory, the Brazilian government and mining companies must master the refining of these metals through autochthonous technologies. Thus, we developed a process to separate the light (La, Ce, Pr and Nd) from the medium (Sm, Eu and Gd) and heavy (Tb-Lu and Y) rare earth elements (REE) with D<sub>2</sub>EHPA by empirical modeling of solvent extraction (SX) processes. The experimental methodology included three phases: equilibrium data acquisition from batch experiments, solvent extraction simulation, and continuous process trials to validate the model on a mini-pilot scale. Our simulation predicted 99.5% Sm organic recovery and 80% Nd aqueous recovery in a seven-stage process and 0.30 A/O ratio, validated in the continuous trial. This work paves the way for establishing Brazilian technology to obtain the constituent elements of permanent magnets.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-023-00411-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for permanent magnets is expected to increase in the 2021–2030 decade, which will require a commensurate increase in the production of samarium (Sm) and neodymium (Nd). Since these metals are considered critical and due to their abundance in Brazilian territory, the Brazilian government and mining companies must master the refining of these metals through autochthonous technologies. Thus, we developed a process to separate the light (La, Ce, Pr and Nd) from the medium (Sm, Eu and Gd) and heavy (Tb-Lu and Y) rare earth elements (REE) with D2EHPA by empirical modeling of solvent extraction (SX) processes. The experimental methodology included three phases: equilibrium data acquisition from batch experiments, solvent extraction simulation, and continuous process trials to validate the model on a mini-pilot scale. Our simulation predicted 99.5% Sm organic recovery and 80% Nd aqueous recovery in a seven-stage process and 0.30 A/O ratio, validated in the continuous trial. This work paves the way for establishing Brazilian technology to obtain the constituent elements of permanent magnets.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.