Modeling the transmission dynamics of varicella in Hungary

IF 1.2 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
János Karsai, Rita Csuma-Kovács, Ágnes Dánielisz, Zsuzsanna Molnár, János Dudás, Teodóra Borsos, Gergely Röst
{"title":"Modeling the transmission dynamics of varicella in Hungary","authors":"János Karsai, Rita Csuma-Kovács, Ágnes Dánielisz, Zsuzsanna Molnár, János Dudás, Teodóra Borsos, Gergely Röst","doi":"10.1186/s13362-020-00079-z","DOIUrl":null,"url":null,"abstract":"Vaccines against varicella-zoster virus (VZV) are under introduction in Hungary into the routine vaccination schedule, hence it is important to understand the current transmission dynamics and to estimate the key parameters of the disease. Mathematical models can be greatly useful in advising public health policy decision making by comparing predictions for different scenarios. First we consider a simple compartmental model that includes key features of VZV such as latency and reactivation of the virus as zoster, and exogeneous boosting of immunity. After deriving the basic reproduction number $R_{0}$, the model is analysed mathematically and the threshold dynamics is proven: if $R_{0}\\leq 1$ then the virus will be eradicated, while if $R_{0}>1$ then an endemic equilibrium exists and the virus uniformly persists in the population. Then we extend the model to include seasonality, and fit it to monthly incidence data from Hungary. It is shown that besides the seasonality, the disease dynamics has intrinsic multi-annual periodicity. We also investigate the sensitivity of the model outputs to the system parameters and the underreporting ratio, and provide estimates for $R_{0}$.","PeriodicalId":44012,"journal":{"name":"Journal of Mathematics in Industry","volume":"11 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-020-00079-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 7

Abstract

Vaccines against varicella-zoster virus (VZV) are under introduction in Hungary into the routine vaccination schedule, hence it is important to understand the current transmission dynamics and to estimate the key parameters of the disease. Mathematical models can be greatly useful in advising public health policy decision making by comparing predictions for different scenarios. First we consider a simple compartmental model that includes key features of VZV such as latency and reactivation of the virus as zoster, and exogeneous boosting of immunity. After deriving the basic reproduction number $R_{0}$, the model is analysed mathematically and the threshold dynamics is proven: if $R_{0}\leq 1$ then the virus will be eradicated, while if $R_{0}>1$ then an endemic equilibrium exists and the virus uniformly persists in the population. Then we extend the model to include seasonality, and fit it to monthly incidence data from Hungary. It is shown that besides the seasonality, the disease dynamics has intrinsic multi-annual periodicity. We also investigate the sensitivity of the model outputs to the system parameters and the underreporting ratio, and provide estimates for $R_{0}$.
匈牙利水痘传播动力学建模
匈牙利正在将水痘带状疱疹病毒(VZV)疫苗引入常规疫苗接种计划,因此了解当前的传播动态并估计该疾病的关键参数非常重要。通过比较不同情景的预测,数学模型在为公共卫生政策决策提供建议方面非常有用。首先,我们考虑一个简单的区室模型,其中包括VZV的关键特征,如病毒的潜伏期和带状疱疹的再激活,以及外源性免疫增强。在得到基本繁殖数$R_{0}$后,对模型进行数学分析,并证明了阈值动力学:如果$R_{0}\leq 1$,则病毒将被根除,而如果$R_{0}>1$,则存在一种地方性平衡,病毒在人群中均匀地持续存在。然后,我们将模型扩展到包括季节性因素,并将其拟合到匈牙利的每月发病率数据中。结果表明,除季节性外,病害动态还具有内在的多年周期性。我们还研究了模型输出对系统参数和漏报率的敏感性,并提供了$R_{0}$的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics in Industry
Journal of Mathematics in Industry MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.00
自引率
0.00%
发文量
12
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信