Shifting numbers of abelian varieties via bounded t-structures

Pub Date : 2023-11-27 DOI:10.1007/s00229-023-01525-z
Yu-Wei Fan
{"title":"Shifting numbers of abelian varieties via bounded t-structures","authors":"Yu-Wei Fan","doi":"10.1007/s00229-023-01525-z","DOIUrl":null,"url":null,"abstract":"<p>The shifting numbers measure the asymptotic amount by which an endofunctor of a triangulated category translates inside the category, and are analogous to Poincaré translation numbers that are widely used in dynamical systems. Motivated by this analogy, Fan–Filip raised the following question: “Do the shifting numbers define a quasimorphism on the group of autoequivalences of a triangulated category?” An affirmative answer was given by Fan–Filip for the bounded derived category of coherent sheaves on an elliptic curve or an abelian surface, via properties of the spaces of Bridgeland stability conditions on these categories. We prove in this article that the question has an affirmative answer for abelian varieties of arbitrary dimensions, generalizing the result of Fan–Filip. One of the key steps is to establish an alternative definition of the shifting numbers via bounded <i>t</i>-structures on triangulated categories. In particular, the full package of a Bridgeland stability condition (a bounded <i>t</i>-structure, and a central charge on a charge lattice) is not necessary for the purpose of computing the shifting numbers.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-023-01525-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The shifting numbers measure the asymptotic amount by which an endofunctor of a triangulated category translates inside the category, and are analogous to Poincaré translation numbers that are widely used in dynamical systems. Motivated by this analogy, Fan–Filip raised the following question: “Do the shifting numbers define a quasimorphism on the group of autoequivalences of a triangulated category?” An affirmative answer was given by Fan–Filip for the bounded derived category of coherent sheaves on an elliptic curve or an abelian surface, via properties of the spaces of Bridgeland stability conditions on these categories. We prove in this article that the question has an affirmative answer for abelian varieties of arbitrary dimensions, generalizing the result of Fan–Filip. One of the key steps is to establish an alternative definition of the shifting numbers via bounded t-structures on triangulated categories. In particular, the full package of a Bridgeland stability condition (a bounded t-structure, and a central charge on a charge lattice) is not necessary for the purpose of computing the shifting numbers.

分享
查看原文
通过有界t结构的阿贝尔变异数的移位
移位数测量了一个三角化范畴的内函子在范畴内平移的渐近量,类似于在动力系统中广泛使用的庞加莱平移数。受到这个类比的启发,Fan-Filip提出了以下问题:“移位的数是否定义了三角化范畴的自等价群上的拟同构?”利用椭圆曲线或阿贝曲面上相干束的布里奇兰稳定性条件的空间性质,给出了该类上相干束的有界派生范畴的肯定答案。推广了Fan-Filip的结果,证明了该问题对于任意维的阿贝尔变有一个肯定的答案。其中一个关键步骤是通过三角分类上的有界t结构建立移动数的另一种定义。特别是,布里奇兰稳定性条件的完整包(有界t结构和电荷格上的中心电荷)对于计算移位数的目的是不必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信