{"title":"Inspired by mussel: biomimetic polyelectrolyte complex coacervate adhesive initiates a connection through water exchange","authors":"Guilong Wang, Zhen-Feng Hu, Xiu-Bing Liang, Fu-Xue Chen","doi":"10.1680/jbibn.21.00001","DOIUrl":null,"url":null,"abstract":"Here the authors report a versatile and strong underwater adhesive that was inspired by the chemical features of mussel foot proteins. A random copolymer (poly(<i>N</i>-(3,4-dihydroxyphenethyl)methacrylamide-co-methacryloxyethyltrimethyl ammonium chloride-co-acrylamide) (PDMA)–Tf<sub>2</sub>N) was prepared that contained side-chain catechol groups and quaternary ammonium cations that were ion-paired with bis(trifluoromethane-sulfonyl)imide anion (Tf<sub>2</sub>N<sup>−</sup>). After dissolving PDMA–Tf<sub>2</sub>N and poly(acrylic acid) in dimethyl sulfoxide, a polyelectrolyte complex coacervate adhesive (P2) could be formed, which could be triggered through solvent exchange. P2 exhibited outstanding underwater shear strength to various substrate surfaces. After a critical curing time (<i>t</i> <sub>s</sub> = 10 min), the adhesion strength of P2 to glass increased sharply up to 187.298 kPa (<i>t</i> <sub>s</sub> = 40 min).","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"72 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.21.00001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Here the authors report a versatile and strong underwater adhesive that was inspired by the chemical features of mussel foot proteins. A random copolymer (poly(N-(3,4-dihydroxyphenethyl)methacrylamide-co-methacryloxyethyltrimethyl ammonium chloride-co-acrylamide) (PDMA)–Tf2N) was prepared that contained side-chain catechol groups and quaternary ammonium cations that were ion-paired with bis(trifluoromethane-sulfonyl)imide anion (Tf2N−). After dissolving PDMA–Tf2N and poly(acrylic acid) in dimethyl sulfoxide, a polyelectrolyte complex coacervate adhesive (P2) could be formed, which could be triggered through solvent exchange. P2 exhibited outstanding underwater shear strength to various substrate surfaces. After a critical curing time (ts = 10 min), the adhesion strength of P2 to glass increased sharply up to 187.298 kPa (ts = 40 min).
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.