{"title":"The in situ potential of synthetic nano-hydroxyapatite for tooth enamel repair","authors":"S Gokce Ince, R Banu Ermis","doi":"21.00022","DOIUrl":null,"url":null,"abstract":"This study was designed to evaluate whether nano-hydroxyapatite toothpastes with or without fluoride would be more advantageous than a fluoride toothpaste in the repair of eroded enamel in situ. Twenty-one subjects participated in this single-blind, randomized, cross-over design study with three 7-day treatment phases. In each phase, the subjects wearing a palatal appliance containing five sterilized enamel specimens used either one of the two test regimens (1% nano-hydroxyapatite toothpaste and 2.25% nano-hydroxyapatite/1450 parts per million (ppm) fluoride toothpaste) or one control (1400 ppm fluoride toothpaste). Enamel specimens were extraorally demineralized (4 × 5 min/day) and were intraorally treated with the toothpastes (2 × 2 min/day). The nano-hydroxyapatite toothpaste groups exhibited significantly higher surface microhardness than did the standard fluoride toothpaste group (<i>p</i> < 0.05). Enamel surface hardness was increased only by nano-hydroxyapatite toothpastes after in situ treatment compared with the baseline (<i>p</i> < 0.05). Morphological analysis demonstrated an apatite-type crystal deposition on the eroded enamel surface produced by nano-hydroxyapatite toothpastes, while fluoride toothpaste failed to show any significant surface deposition. Chemical analysis showed a higher content of calcium and phosphorus in the enamel surface treated with nano-hydroxyapatite toothpastes compared with that in the control one (<i>p</i> < 0.05). It is concluded that home use of nano-hydroxyapatite containing toothpastes may have a protective effect against erosion at the enamel surface.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"70 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/21.00022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study was designed to evaluate whether nano-hydroxyapatite toothpastes with or without fluoride would be more advantageous than a fluoride toothpaste in the repair of eroded enamel in situ. Twenty-one subjects participated in this single-blind, randomized, cross-over design study with three 7-day treatment phases. In each phase, the subjects wearing a palatal appliance containing five sterilized enamel specimens used either one of the two test regimens (1% nano-hydroxyapatite toothpaste and 2.25% nano-hydroxyapatite/1450 parts per million (ppm) fluoride toothpaste) or one control (1400 ppm fluoride toothpaste). Enamel specimens were extraorally demineralized (4 × 5 min/day) and were intraorally treated with the toothpastes (2 × 2 min/day). The nano-hydroxyapatite toothpaste groups exhibited significantly higher surface microhardness than did the standard fluoride toothpaste group (p < 0.05). Enamel surface hardness was increased only by nano-hydroxyapatite toothpastes after in situ treatment compared with the baseline (p < 0.05). Morphological analysis demonstrated an apatite-type crystal deposition on the eroded enamel surface produced by nano-hydroxyapatite toothpastes, while fluoride toothpaste failed to show any significant surface deposition. Chemical analysis showed a higher content of calcium and phosphorus in the enamel surface treated with nano-hydroxyapatite toothpastes compared with that in the control one (p < 0.05). It is concluded that home use of nano-hydroxyapatite containing toothpastes may have a protective effect against erosion at the enamel surface.
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.