Using Double Inertial Steps Into the Single Projection Method with Non-monotonic Step Sizes for Solving Pseudomontone Variational Inequalities

Duong Viet Thong, Xiao-Huan Li, Vu Tien Dung, Pham Thi Huong Huyen, Hoang Thi Thanh Tam
{"title":"Using Double Inertial Steps Into the Single Projection Method with Non-monotonic Step Sizes for Solving Pseudomontone Variational Inequalities","authors":"Duong Viet Thong, Xiao-Huan Li, Vu Tien Dung, Pham Thi Huong Huyen, Hoang Thi Thanh Tam","doi":"10.1007/s11067-023-09606-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a new modified algorithm for finding an element of the set of solutions of a pseudomonotone, Lipschitz continuous variational inequality problem in real Hilbert spaces. Using the technique of double inertial steps into a single projection method we give weak and strong convergence theorems of the proposed algorithm. The weak convergence does not require prior knowledge of the Lipschitz constant of the variational inequality mapping and only computes one projection onto a feasible set per iteration as well as without using the sequentially weak continuity of the associated mapping. Under additional strong pseudomonotonicity and Lipschitz continuity assumptions, the <i>R</i>-linear convergence rate of the proposed algorithm is presented. Finally, some numerical examples are given to illustrate the effectiveness of the algorithms.</p>","PeriodicalId":501141,"journal":{"name":"Networks and Spatial Economics","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks and Spatial Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11067-023-09606-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new modified algorithm for finding an element of the set of solutions of a pseudomonotone, Lipschitz continuous variational inequality problem in real Hilbert spaces. Using the technique of double inertial steps into a single projection method we give weak and strong convergence theorems of the proposed algorithm. The weak convergence does not require prior knowledge of the Lipschitz constant of the variational inequality mapping and only computes one projection onto a feasible set per iteration as well as without using the sequentially weak continuity of the associated mapping. Under additional strong pseudomonotonicity and Lipschitz continuity assumptions, the R-linear convergence rate of the proposed algorithm is presented. Finally, some numerical examples are given to illustrate the effectiveness of the algorithms.

Abstract Image

用双惯性步进非单调步长单投影法求解伪单调变分不等式
本文提出了一种新的改进算法,用于求实Hilbert空间中伪单调Lipschitz连续变分不等式问题解集的一个元素。利用双惯性阶跃转化为单投影法的技术,给出了该算法的弱收敛定理和强收敛定理。弱收敛不需要事先知道变分不等式映射的Lipschitz常数,每次迭代只计算一个可行集上的投影,也不使用相关映射的顺序弱连续性。在附加强伪单调性和Lipschitz连续性假设下,给出了该算法的r -线性收敛速率。最后,通过数值算例说明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信