Signature of (anti)cooperativity in the stochastic fluctuations of small systems: application to the bacterial flagellar motor

María-José Franco-Oñate, Andrea Parmeggiani, Jérôme Dorignac, Frédéric Geniet, Jean-Charles Walter, Francesco Pedaci, Ashley L Nord, John Palmeri, Nils-Ole Walliser
{"title":"Signature of (anti)cooperativity in the stochastic fluctuations of small systems: application to the bacterial flagellar motor","authors":"María-José Franco-Oñate, Andrea Parmeggiani, Jérôme Dorignac, Frédéric Geniet, Jean-Charles Walter, Francesco Pedaci, Ashley L Nord, John Palmeri, Nils-Ole Walliser","doi":"arxiv-2307.00636","DOIUrl":null,"url":null,"abstract":"The cooperative binding of molecular agents onto a substrate is pervasive in\nliving systems. To study whether a system shows cooperativity, one can rely on\na fluctuation analysis of quantities such as the number of substrate-bound\nunits and the residence time in an occupancy state. Since the relative standard\ndeviation from the statistical mean monotonically decreases with the number of\nbinding sites, these techniques are only suitable for small enough systems,\nsuch as those implicated in stochastic processes inside cells. Here, we present\na general-purpose grand canonical Hamiltonian description of a small\none-dimensional (1D) lattice gas with either nearest-neighbor or long-range\ninteractions as prototypical examples of cooperativity-influenced adsorption\nprocesses. First, we elucidate how the strength and sign of the interaction\npotential between neighboring bound particles on the lattice determine the\nintensity of the fluctuations of the mean occupancy. We then employ this\nrelationship to compare the theoretical predictions of our model to data from\nsingle molecule experiments on bacterial flagellar motors (BFM) of E. coli. In\nthis way, we find evidence that cooperativity controls the mechano-sensitive\ndynamical assembly of the torque-generating units, the so-called stator units,\nonto the BFM. Finally, we estimate the stator-stator interaction potential and\nattempt to quantify the adaptability of the BFM.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"58 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2307.00636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cooperative binding of molecular agents onto a substrate is pervasive in living systems. To study whether a system shows cooperativity, one can rely on a fluctuation analysis of quantities such as the number of substrate-bound units and the residence time in an occupancy state. Since the relative standard deviation from the statistical mean monotonically decreases with the number of binding sites, these techniques are only suitable for small enough systems, such as those implicated in stochastic processes inside cells. Here, we present a general-purpose grand canonical Hamiltonian description of a small one-dimensional (1D) lattice gas with either nearest-neighbor or long-range interactions as prototypical examples of cooperativity-influenced adsorption processes. First, we elucidate how the strength and sign of the interaction potential between neighboring bound particles on the lattice determine the intensity of the fluctuations of the mean occupancy. We then employ this relationship to compare the theoretical predictions of our model to data from single molecule experiments on bacterial flagellar motors (BFM) of E. coli. In this way, we find evidence that cooperativity controls the mechano-sensitive dynamical assembly of the torque-generating units, the so-called stator units, onto the BFM. Finally, we estimate the stator-stator interaction potential and attempt to quantify the adaptability of the BFM.
小系统随机波动中的(反)协同特征:在细菌鞭毛马达上的应用
分子制剂与底物的协同结合在生物系统中是普遍存在的。为了研究一个系统是否表现出协同性,人们可以依赖于诸如衬底结合单元的数量和占据状态下的停留时间等量的波动分析。由于统计平均值的相对标准偏差随着结合位点的数量单调减小,这些技术只适用于足够小的系统,例如那些涉及细胞内随机过程的系统。在这里,我们提出了一个具有最近邻或远程相互作用的小一维晶格气体的通用大正则哈密顿描述,作为协同作用影响吸附过程的典型例子。首先,我们阐明了晶格上相邻束缚粒子之间的相互作用势的强度和符号如何决定平均占位波动的强度。然后,我们利用这种关系将我们的模型的理论预测与大肠杆菌细菌鞭毛马达(BFM)的单分子实验数据进行比较。通过这种方式,我们发现协同性控制扭矩发电单元(即所谓的定子单元)的机械敏感动力总成到BFM上的证据。最后,我们估计了定子相互作用电位,并试图量化BFM的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信