Acoustic enrichment of heterogenous circulating tumor cells and clusters from patients with metastatic prostate cancer

Cecilia Magnusson, Per Augustsson, Eva Undvall Anand, Andreas Lenshof, Andreas Josefsson, Karin Welen, Anders Bjartell, Yvonne Ceder, Hans Lilja, Thomas Laurell
{"title":"Acoustic enrichment of heterogenous circulating tumor cells and clusters from patients with metastatic prostate cancer","authors":"Cecilia Magnusson, Per Augustsson, Eva Undvall Anand, Andreas Lenshof, Andreas Josefsson, Karin Welen, Anders Bjartell, Yvonne Ceder, Hans Lilja, Thomas Laurell","doi":"10.1101/2023.12.04.23299128","DOIUrl":null,"url":null,"abstract":"Background: There are important unmet clinical needs to develop cell enrichment technologies to enable unbiased label-free isolation of both single cell and clusters of circulating tumor cells (CTCs) manifesting heterogeneous lineage specificity. Here, we report a pilot study based on microfluidic acoustophoresis enrichment of CTCs using the CellSearch CTC assay as a reference modality. Methods: Acoustophoresis uses an ultrasonic standing wave field to separate cells based on biomechanical properties (size, density, and compressibility) resulting in inherently label-free and epitope-independent cell enrichment. Following red blood cell lysis and paraformaldehyde fixation, 6 mL of whole blood from 12 patients with metastatic prostate cancer and 20 healthy controls were processed with acoustophoresis and subsequent image cytometry. Results: Acoustophoresis enabled enrichment and characterization of phenotypic CTCs (EpCAM+, Cytokeratin+, DAPI+, CD45-/CD66b-) in all patients with metastatic prostate cancer and detected CTC-clusters composed of only CTCs or heterogenous aggregates of CTCs clustered with various types of white blood cells in 9 out of 12 patients. By contrast, CellSearch did not detect any CTC-clusters, but detected comparable numbers of phenotypic CTCs as acoustophoresis, with trends of finding higher number of CTCs using acoustophoresis. Conclusion: Our preliminary data indicate that acoustophoresis provides excellent possibilities to detect and characterize CTC-clusters as a putative marker of metastatic disease and outcomes. Moreover, acoustophoresis enables sensitive label-free enrichment of cells with epithelial phenotype in blood and offers opportunities to detect and characterize CTCs undergoing epithelial-to-mesenchymal transitioning and lineage plasticity.","PeriodicalId":501140,"journal":{"name":"medRxiv - Urology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Urology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.12.04.23299128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: There are important unmet clinical needs to develop cell enrichment technologies to enable unbiased label-free isolation of both single cell and clusters of circulating tumor cells (CTCs) manifesting heterogeneous lineage specificity. Here, we report a pilot study based on microfluidic acoustophoresis enrichment of CTCs using the CellSearch CTC assay as a reference modality. Methods: Acoustophoresis uses an ultrasonic standing wave field to separate cells based on biomechanical properties (size, density, and compressibility) resulting in inherently label-free and epitope-independent cell enrichment. Following red blood cell lysis and paraformaldehyde fixation, 6 mL of whole blood from 12 patients with metastatic prostate cancer and 20 healthy controls were processed with acoustophoresis and subsequent image cytometry. Results: Acoustophoresis enabled enrichment and characterization of phenotypic CTCs (EpCAM+, Cytokeratin+, DAPI+, CD45-/CD66b-) in all patients with metastatic prostate cancer and detected CTC-clusters composed of only CTCs or heterogenous aggregates of CTCs clustered with various types of white blood cells in 9 out of 12 patients. By contrast, CellSearch did not detect any CTC-clusters, but detected comparable numbers of phenotypic CTCs as acoustophoresis, with trends of finding higher number of CTCs using acoustophoresis. Conclusion: Our preliminary data indicate that acoustophoresis provides excellent possibilities to detect and characterize CTC-clusters as a putative marker of metastatic disease and outcomes. Moreover, acoustophoresis enables sensitive label-free enrichment of cells with epithelial phenotype in blood and offers opportunities to detect and characterize CTCs undergoing epithelial-to-mesenchymal transitioning and lineage plasticity.
来自转移性前列腺癌患者的异质循环肿瘤细胞和肿瘤簇的声富集
背景:开发细胞富集技术,使单细胞和循环肿瘤细胞簇(ctc)的无偏见无标记分离具有异质谱系特异性,这是重要的未满足的临床需求。在这里,我们报告了一项基于微流控声控富集CTC的试点研究,使用CellSearch CTC检测作为参考模式。方法:声波电泳利用超声驻波场根据生物力学特性(大小、密度和可压缩性)分离细胞,从而获得固有的无标记和独立于表位的细胞富集。对12例转移性前列腺癌患者和20例健康对照者的6 mL全血进行了红细胞溶解和多聚甲醛固定处理。结果:在所有转移性前列腺癌患者中,声波电泳能够富集和表征表型ctc (EpCAM+、Cytokeratin+、DAPI+、CD45-/CD66b-),并在12例患者中检测到9例仅由ctc组成的ctc簇或与各种类型白细胞聚集的ctc异质聚集体。相比之下,CellSearch没有检测到任何ctc簇,但检测到相当数量的表型ctc作为声阻抗,并且使用声阻抗发现更多数量的ctc的趋势。结论:我们的初步数据表明,声阻抗为检测和表征ctc簇提供了极好的可能性,ctc簇被认为是转移性疾病和预后的标志。此外,声阻抗可以对血液中具有上皮表型的细胞进行敏感的无标记富集,并为检测和表征正在经历上皮到间质转变和谱系可塑性的ctc提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信