Revisiting Runtime Dynamic Optimization for Join Queries in Big Data Management Systems

Christina Pavlopoulou, Michael J. Carey, Vassilis J. Tsotras
{"title":"Revisiting Runtime Dynamic Optimization for Join Queries in Big Data Management Systems","authors":"Christina Pavlopoulou, Michael J. Carey, Vassilis J. Tsotras","doi":"https://dl.acm.org/doi/10.1145/3604437.3604460","DOIUrl":null,"url":null,"abstract":"<p>Effective query optimization remains an open problem for Big Data Management Systems. In this work, we revisit an old idea, runtime dynamic optimization, and adapt it to a big data management system, AsterixDB. The approach runs in stages (re-optimization points), starting by first executing all predicates local to a single dataset. The intermediate result created by a stage is then used to re-optimize the remaining query. This re-optimization approach avoids inaccurate intermediate result cardinality estimates, thus leading to much better execution plans. While it introduces overhead for materializing intermediate results, experiments show that this overhead is relatively small and is an acceptable price to pay given the optimization benefits.</p>","PeriodicalId":501169,"journal":{"name":"ACM SIGMOD Record","volume":"254 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3604437.3604460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective query optimization remains an open problem for Big Data Management Systems. In this work, we revisit an old idea, runtime dynamic optimization, and adapt it to a big data management system, AsterixDB. The approach runs in stages (re-optimization points), starting by first executing all predicates local to a single dataset. The intermediate result created by a stage is then used to re-optimize the remaining query. This re-optimization approach avoids inaccurate intermediate result cardinality estimates, thus leading to much better execution plans. While it introduces overhead for materializing intermediate results, experiments show that this overhead is relatively small and is an acceptable price to pay given the optimization benefits.

大数据管理系统中Join查询的运行时动态优化研究
有效的查询优化仍然是大数据管理系统的一个开放性问题。在这项工作中,我们重新审视了一个古老的思想,运行时动态优化,并将其应用于大数据管理系统AsterixDB。该方法分阶段运行(重新优化点),首先执行单个数据集本地的所有谓词。然后使用阶段创建的中间结果重新优化剩余的查询。这种重新优化方法避免了不准确的中间结果基数估计,从而导致更好的执行计划。虽然它引入了实现中间结果的开销,但实验表明,这种开销相对较小,并且考虑到优化的好处,这是可以接受的代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信