{"title":"Investigation of the Zeta Adsorption Model and Gas-Solid Adsorption Phase Transition Mechanism Using Statistical Mechanics at Gas-Solid Interfaces","authors":"Di Zhang","doi":"10.1155/2023/8899160","DOIUrl":null,"url":null,"abstract":"This review examines the significance of the zeta adsorption model in physics and its integration with statistical mechanics within the field of interface adsorption. Through a comprehensive analysis of existing research, this study presents the collective findings and insights derived from the reviewed literature. The zeta adsorption model, proposed by Ward, has gained recognition for its seamless extension into the thermal disequilibrium region without encountering singularities. By incorporating principles from quantum mechanics and statistical thermodynamics, this model offers fresh perspectives on the adsorption of gas molecules on solid surfaces. Notably, it demonstrates enhanced accuracy in describing the adsorption performance of mesoporous materials and nanomaterial surfaces, surpassing the limitations of traditional models such as the BET isotherm. Additionally, this review explores the behavior of cluster formation under varying temperature and pressure conditions. It highlights the correlation between increasing pressure ratios and the decreased availability of empty adsorption sites, resulting in the formation of larger clusters within the adsorbate. Ultimately, this process leads to a transition from adsorption to condensation, where the liquid phase wets the solid surface. Moreover, the zeta adsorption model provides a solid theoretical foundation for understanding crucial aspects of gas-solid interface adsorption. It enables the determination of the distribution of adsorbate clusters on gas-solid interfaces, facilitates the identification of wetting pressure ratios during phase transitions, and allows for the calculation of solid surface tension under conditions of zero adsorption. Noteworthy parameters such as the bonding strength (<i>β</i>) between the solid surface and adsorbed atoms significantly influence the overall strength of the solid-fluid interaction. Furthermore, the phenomenon of surface subcooling, which necessitates sufficient energy for the transformation from adsorbed vapor to condensate liquid, plays a pivotal role in studying interface phase transitions. Additionally, this review investigates the thermodynamic stability of the adsorbate through an analysis of molar latent heat. It reveals that beyond a critical adsorbate coverage, the formation of critical-sized clusters and the ensuing interactions among these components render the adsorbate unstable. This instability prompts a transition from the interface to a liquid phase, followed by subsequent adsorption onto the surface. In summary, this literature review highlights the significant contributions of the zeta adsorption model to the field of physics, particularly in the context of interface adsorption. It serves as a valuable tool for studying various materials and cluster formation, thanks to its seamless extension into the thermal disequilibrium region and its incorporation of principles from quantum mechanics and statistical thermodynamics. By presenting a synthesis of existing research, this review sheds light on the advantages of the zeta adsorption model and paves the way for further investigations into gas-solid interface adsorption phenomena.","PeriodicalId":7315,"journal":{"name":"Adsorption Science & Technology","volume":"23 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8899160","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This review examines the significance of the zeta adsorption model in physics and its integration with statistical mechanics within the field of interface adsorption. Through a comprehensive analysis of existing research, this study presents the collective findings and insights derived from the reviewed literature. The zeta adsorption model, proposed by Ward, has gained recognition for its seamless extension into the thermal disequilibrium region without encountering singularities. By incorporating principles from quantum mechanics and statistical thermodynamics, this model offers fresh perspectives on the adsorption of gas molecules on solid surfaces. Notably, it demonstrates enhanced accuracy in describing the adsorption performance of mesoporous materials and nanomaterial surfaces, surpassing the limitations of traditional models such as the BET isotherm. Additionally, this review explores the behavior of cluster formation under varying temperature and pressure conditions. It highlights the correlation between increasing pressure ratios and the decreased availability of empty adsorption sites, resulting in the formation of larger clusters within the adsorbate. Ultimately, this process leads to a transition from adsorption to condensation, where the liquid phase wets the solid surface. Moreover, the zeta adsorption model provides a solid theoretical foundation for understanding crucial aspects of gas-solid interface adsorption. It enables the determination of the distribution of adsorbate clusters on gas-solid interfaces, facilitates the identification of wetting pressure ratios during phase transitions, and allows for the calculation of solid surface tension under conditions of zero adsorption. Noteworthy parameters such as the bonding strength (β) between the solid surface and adsorbed atoms significantly influence the overall strength of the solid-fluid interaction. Furthermore, the phenomenon of surface subcooling, which necessitates sufficient energy for the transformation from adsorbed vapor to condensate liquid, plays a pivotal role in studying interface phase transitions. Additionally, this review investigates the thermodynamic stability of the adsorbate through an analysis of molar latent heat. It reveals that beyond a critical adsorbate coverage, the formation of critical-sized clusters and the ensuing interactions among these components render the adsorbate unstable. This instability prompts a transition from the interface to a liquid phase, followed by subsequent adsorption onto the surface. In summary, this literature review highlights the significant contributions of the zeta adsorption model to the field of physics, particularly in the context of interface adsorption. It serves as a valuable tool for studying various materials and cluster formation, thanks to its seamless extension into the thermal disequilibrium region and its incorporation of principles from quantum mechanics and statistical thermodynamics. By presenting a synthesis of existing research, this review sheds light on the advantages of the zeta adsorption model and paves the way for further investigations into gas-solid interface adsorption phenomena.
期刊介绍:
Adsorption Science & Technology is a peer-reviewed, open access journal devoted to studies of adsorption and desorption phenomena, which publishes original research papers and critical review articles, with occasional special issues relating to particular topics and symposia.