Transition in viscoelastic properties within successive annual rings of radiata pine (Pinus radiata)

IF 2.2 3区 农林科学 Q2 FORESTRY
Hiroaki Horiyama, Keisuke Kojiro, Yuzo Furuta
{"title":"Transition in viscoelastic properties within successive annual rings of radiata pine (Pinus radiata)","authors":"Hiroaki Horiyama, Keisuke Kojiro, Yuzo Furuta","doi":"10.1186/s10086-023-02112-2","DOIUrl":null,"url":null,"abstract":"Dynamic mechanical analysis (DMA) measurements of water-saturated radiata pine wood in the temperature range from 0 ℃ to 100 ℃ were focused to clarify the transition in viscoelastic properties within successive annual rings. Four radially consecutive specimens were taken per annual ring and DMA measurements in the tangential direction were performed using these specimens. The following results were obtained. The peak of tanδ caused by micro-Brownian motion of lignin was observed in all samples. The temperature of peak tanδ tended to decrease from earlywood to latewood within an annual ring. The temperature of peak tanδ increased across annual ring boundary. The same trend was repeated within the next annual ring. It was found that the viscoelastic properties transitioned within successive annual rings.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"32 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s10086-023-02112-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic mechanical analysis (DMA) measurements of water-saturated radiata pine wood in the temperature range from 0 ℃ to 100 ℃ were focused to clarify the transition in viscoelastic properties within successive annual rings. Four radially consecutive specimens were taken per annual ring and DMA measurements in the tangential direction were performed using these specimens. The following results were obtained. The peak of tanδ caused by micro-Brownian motion of lignin was observed in all samples. The temperature of peak tanδ tended to decrease from earlywood to latewood within an annual ring. The temperature of peak tanδ increased across annual ring boundary. The same trend was repeated within the next annual ring. It was found that the viscoelastic properties transitioned within successive annual rings.
辐射松(Pinus radiata)连续年轮内粘弹性的变化
本文对饱和水辐射松材在0 ~ 100℃温度范围内的动态力学分析(DMA)进行了研究,以阐明其粘弹性在连续年轮内的变化。每个年轮取四个径向连续的样本,并使用这些样本进行切向的DMA测量。得到了以下结果:在所有样品中均观察到由木质素微布朗运动引起的tanδ峰。在一个年轮内,峰值温度由早木向晚木递减。峰值tanδ温度在年轮边界处升高。同样的趋势在下一个年轮中重复出现。发现粘弹性在连续的年轮内发生了过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Wood Science
Journal of Wood Science 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
10.30%
发文量
57
审稿时长
6 months
期刊介绍: The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信