Error propagation and attribution in simulation-based capital models

IF 1.5 Q3 BUSINESS, FINANCE
Daniel J. Crispin
{"title":"Error propagation and attribution in simulation-based capital models","authors":"Daniel J. Crispin","doi":"10.1017/s1748499523000210","DOIUrl":null,"url":null,"abstract":"Calculation of loss scenarios is a fundamental requirement of simulation-based capital models and these are commonly approximated. Within a life insurance setting, a loss scenario may involve an asset-liability optimization. When cashflows and asset values are dependent on only a small number of risk factor components, low-dimensional approximations may be used as inputs into the optimization and resulting in loss approximation. By considering these loss approximations as perturbations of linear optimization problems, approximation errors in loss scenarios can be bounded to first order and attributed to specific proxies. This attribution creates a mechanism for approximation improvements and for the eventual elimination of approximation errors in capital estimates through targeted exact computation. The results are demonstrated through a stylized worked example and corresponding numerical study. Advances in error analysis of proxy models enhance confidence in capital estimates. Beyond error analysis, the presented methods can be applied to general sensitivity analysis and the calculation of risk.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499523000210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Calculation of loss scenarios is a fundamental requirement of simulation-based capital models and these are commonly approximated. Within a life insurance setting, a loss scenario may involve an asset-liability optimization. When cashflows and asset values are dependent on only a small number of risk factor components, low-dimensional approximations may be used as inputs into the optimization and resulting in loss approximation. By considering these loss approximations as perturbations of linear optimization problems, approximation errors in loss scenarios can be bounded to first order and attributed to specific proxies. This attribution creates a mechanism for approximation improvements and for the eventual elimination of approximation errors in capital estimates through targeted exact computation. The results are demonstrated through a stylized worked example and corresponding numerical study. Advances in error analysis of proxy models enhance confidence in capital estimates. Beyond error analysis, the presented methods can be applied to general sensitivity analysis and the calculation of risk.
基于仿真的资本模型中的错误传播和归因
损失情景的计算是基于模拟的资本模型的基本要求,这些通常是近似值。在人寿保险设置中,损失场景可能涉及资产负债优化。当现金流和资产价值仅依赖于少数风险因素组成部分时,可以将低维近似用作优化的输入,从而产生损失近似。通过将这些损失近似视为线性优化问题的扰动,损失情景中的近似误差可以限定在一阶并归因于特定的代理。这种归属创造了一种近似改进机制,并通过有针对性的精确计算最终消除资本估计中的近似误差。通过一个程式化的算例和相应的数值研究验证了结果。代理模型误差分析的进展提高了对资本估算的信心。除误差分析外,该方法还可用于一般的敏感性分析和风险计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信