Optical Solitons for the Fokas-Lenells Equation with Beta and M-Truncated Derivatives

IF 1.9 3区 数学 Q1 MATHEMATICS
Farah M. Al-Askar
{"title":"Optical Solitons for the Fokas-Lenells Equation with Beta and M-Truncated Derivatives","authors":"Farah M. Al-Askar","doi":"10.1155/2023/8883811","DOIUrl":null,"url":null,"abstract":"The Fokas-Lenells equation (FLE) including the M-truncated derivative or beta derivative is examined. Using the modified mapping method, new elliptic, hyperbolic, rational, and trigonometric solutions are created. Also, we extend some previous results. Since the FLE has various applications in telecommunication modes, quantum field theory, quantum mechanics, and complex system theory, the solutions produced may be used to interpret a broad variety of important physical process. We present some of 3D and 2D diagrams to illustrate how M-truncated derivative and the beta derivative influence the exact solutions of the FLE. We demonstrate that when the derivative order decreases, the beta derivative pushes the surface to the left, whereas the M-truncated derivative pushes the surface to the right.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"53 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2023/8883811","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Fokas-Lenells equation (FLE) including the M-truncated derivative or beta derivative is examined. Using the modified mapping method, new elliptic, hyperbolic, rational, and trigonometric solutions are created. Also, we extend some previous results. Since the FLE has various applications in telecommunication modes, quantum field theory, quantum mechanics, and complex system theory, the solutions produced may be used to interpret a broad variety of important physical process. We present some of 3D and 2D diagrams to illustrate how M-truncated derivative and the beta derivative influence the exact solutions of the FLE. We demonstrate that when the derivative order decreases, the beta derivative pushes the surface to the left, whereas the M-truncated derivative pushes the surface to the right.
具有Beta和m截断导数的Fokas-Lenells方程的光学孤子
对包括m截断导数或beta导数在内的Fokas-Lenells方程(FLE)进行了检验。利用改进的映射方法,创建了新的椭圆解、双曲解、有理解和三角解。同时,我们扩展了之前的一些结果。由于FLE在电信模式,量子场论,量子力学和复杂系统理论中有各种应用,因此产生的解可用于解释各种重要的物理过程。我们给出了一些3D和2D图表来说明m截断导数和beta导数如何影响FLE的精确解。我们证明,当导数阶数降低时,beta导数将曲面向左推,而m截断的导数将曲面向右推。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信