A Non-Parametric Approach for Change-Point Detection of Multi-Parameters in Time-Series Data

IF 6 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Y. M. Hu, C. X. Yang, Z. M. Liang, X. Y. Luo, Y. X. Huang, C. Tang
{"title":"A Non-Parametric Approach for Change-Point Detection of Multi-Parameters in Time-Series Data","authors":"Y. M. Hu, C. X. Yang, Z. M. Liang, X. Y. Luo, Y. X. Huang, C. Tang","doi":"10.3808/jei.202200478","DOIUrl":null,"url":null,"abstract":"Change-point analysis of time-series data plays a vital role in various fields of earth sciences under changing environments. Most of the analysis approaches were usually designed to detect the change-point in the level of time-series mean. In this study, we aimed to propose a non-parametric approach to detect the change-point of different parameters of time-series data. In this approach, the Boot- strap method, coupling with Kernel density estimation, was first used to estimate the probability distribution function (pdf) of a parameter before and after any potential change-points. Second, the Ar-index based on the uncross area of the two pdfs was designed to quantify the difference of the parameter before and after each potential change-point. Finally, the potential change-point owning the largest Ar-index value was determined as the locations of the change-point of the parameter. The hydrological extreme series from four stations in the Hanjiang basin were used to demonstrate this approach. The Pettitt test method commonly used in hydrology was employed as a comparison to indirectly analyze the reliability of the proposed approach. The results show that change-point detected by the proposed approach in the four stations are identified with those detected by the Pettitt approach in the level of time-series mean. But in comparison with the Pettitt test, the proposed approach can provide more detection information for other parameters, such as coefficient of variation (Cv) and coefficient of skewness (Cs) of the series. The results also show that the degree of change in the series mean is greater than its Cv and Cs, while the degree of change in series Cv is greater than its Cs.\n","PeriodicalId":54840,"journal":{"name":"Journal of Environmental Informatics","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3808/jei.202200478","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Change-point analysis of time-series data plays a vital role in various fields of earth sciences under changing environments. Most of the analysis approaches were usually designed to detect the change-point in the level of time-series mean. In this study, we aimed to propose a non-parametric approach to detect the change-point of different parameters of time-series data. In this approach, the Boot- strap method, coupling with Kernel density estimation, was first used to estimate the probability distribution function (pdf) of a parameter before and after any potential change-points. Second, the Ar-index based on the uncross area of the two pdfs was designed to quantify the difference of the parameter before and after each potential change-point. Finally, the potential change-point owning the largest Ar-index value was determined as the locations of the change-point of the parameter. The hydrological extreme series from four stations in the Hanjiang basin were used to demonstrate this approach. The Pettitt test method commonly used in hydrology was employed as a comparison to indirectly analyze the reliability of the proposed approach. The results show that change-point detected by the proposed approach in the four stations are identified with those detected by the Pettitt approach in the level of time-series mean. But in comparison with the Pettitt test, the proposed approach can provide more detection information for other parameters, such as coefficient of variation (Cv) and coefficient of skewness (Cs) of the series. The results also show that the degree of change in the series mean is greater than its Cv and Cs, while the degree of change in series Cv is greater than its Cs.
时间序列数据多参数变化点检测的非参数方法
在变化环境下,时间序列数据的变点分析在地球科学的各个领域起着至关重要的作用。大多数分析方法通常被设计为检测时间序列均值水平上的变化点。在本研究中,我们旨在提出一种非参数方法来检测时间序列数据中不同参数的变化点。在该方法中,首先使用Boot- strap方法与核密度估计相结合来估计参数在任何潜在变化点前后的概率分布函数(pdf)。其次,设计基于两个pdf不相交面积的ar指数,量化每个潜在变化点前后参数的差异。最后,确定ar指标值最大的潜在变化点作为参数变化点的位置。利用汉江流域4个站点的水文极值序列对该方法进行了验证。采用水文学中常用的Pettitt检验法进行比较,间接分析所提方法的可靠性。结果表明,该方法检测到的4个站点的变化点在时间序列均值水平上与Pettitt方法检测到的变化点一致。但与Pettitt检验相比,本文方法可以为序列的变异系数(Cv)和偏度系数(Cs)等其他参数提供更多的检测信息。结果还表明,序列均值的变化程度大于其Cv和Cs,而序列Cv的变化程度大于其Cs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Informatics
Journal of Environmental Informatics ENVIRONMENTAL SCIENCES-
CiteScore
12.40
自引率
2.90%
发文量
7
审稿时长
24 months
期刊介绍: Journal of Environmental Informatics (JEI) is an international, peer-reviewed, and interdisciplinary publication designed to foster research innovation and discovery on basic science and information technology for addressing various environmental problems. The journal aims to motivate and enhance the integration of science and technology to help develop sustainable solutions that are consensus-oriented, risk-informed, scientifically-based and cost-effective. JEI serves researchers, educators and practitioners who are interested in theoretical and/or applied aspects of environmental science, regardless of disciplinary boundaries. The topics addressed by the journal include: - Planning of energy, environmental and ecological management systems - Simulation, optimization and Environmental decision support - Environmental geomatics - GIS, RS and other spatial information technologies - Informatics for environmental chemistry and biochemistry - Environmental applications of functional materials - Environmental phenomena at atomic, molecular and macromolecular scales - Modeling of chemical, biological and environmental processes - Modeling of biotechnological systems for enhanced pollution mitigation - Computer graphics and visualization for environmental decision support - Artificial intelligence and expert systems for environmental applications - Environmental statistics and risk analysis - Climate modeling, downscaling, impact assessment, and adaptation planning - Other areas of environmental systems science and information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信