Higher Siegel–Weil formula for unitary groups: the non-singular terms

IF 2.6 1区 数学 Q1 MATHEMATICS
Tony Feng, Zhiwei Yun, Wei Zhang
{"title":"Higher Siegel–Weil formula for unitary groups: the non-singular terms","authors":"Tony Feng, Zhiwei Yun, Wei Zhang","doi":"10.1007/s00222-023-01228-y","DOIUrl":null,"url":null,"abstract":"<p>We construct special cycles on the moduli stack of hermitian shtukas. We prove an identity between (1) the <span>\\(r^{\\mathrm{th}}\\)</span> central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of hermitian shtukas with <span>\\(r\\)</span> legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"51 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-023-01228-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct special cycles on the moduli stack of hermitian shtukas. We prove an identity between (1) the \(r^{\mathrm{th}}\) central derivative of non-singular Fourier coefficients of a normalized Siegel–Eisenstein series, and (2) the degree of special cycles of “virtual dimension 0” on the moduli stack of hermitian shtukas with \(r\) legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.

Abstract Image

酉群的高Siegel-Weil公式:非奇异项
我们在厄米什图卡的模堆栈上构造了特殊的环。我们证明了(1)归一化Siegel-Eisenstein级数的非奇异傅立叶系数的\(r^{\mathrm{th}}\)中心导数和(2)具有\(r\)支脚的厄米图卡模堆上“虚维0”的特殊循环的度之间的恒等式。这可以看作是Kudla-Rapoport猜想的函数场模拟,它具有包含爱森斯坦级数的所有高阶导数的附加特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信