{"title":"Spatial Confounding and Spatial+ for Nonlinear Covariate Effects","authors":"Emiko Dupont, Nicole H. Augustin","doi":"10.1007/s13253-023-00586-7","DOIUrl":null,"url":null,"abstract":"<p>Regression models for spatially varying data use spatial random effects to reflect spatial correlation structure. Such random effects, however, may interfere with the covariate effect estimates and make them unreliable. This problem, known as spatial confounding, is complex and has only been studied for models with linear covariate effects. However, as illustrated by a forestry example in which we assess the effect of soil, climate, and topography variables on tree health, the covariate effects of interest are in practice often unknown and nonlinear. We consider, for the first time, spatial confounding in spatial models with nonlinear effects implemented in the generalised additive models (GAMs) framework. We show that spatial+, a recently developed method for alleviating confounding in the linear case, can be adapted to this setting. In practice, spatial+ can then be used both as a diagnostic tool for investigating whether covariate effect estimates are affected by spatial confounding and for correcting the estimates for the resulting bias when it is present. Supplementary materials accompanying this paper appear online.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"20 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-023-00586-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Regression models for spatially varying data use spatial random effects to reflect spatial correlation structure. Such random effects, however, may interfere with the covariate effect estimates and make them unreliable. This problem, known as spatial confounding, is complex and has only been studied for models with linear covariate effects. However, as illustrated by a forestry example in which we assess the effect of soil, climate, and topography variables on tree health, the covariate effects of interest are in practice often unknown and nonlinear. We consider, for the first time, spatial confounding in spatial models with nonlinear effects implemented in the generalised additive models (GAMs) framework. We show that spatial+, a recently developed method for alleviating confounding in the linear case, can be adapted to this setting. In practice, spatial+ can then be used both as a diagnostic tool for investigating whether covariate effect estimates are affected by spatial confounding and for correcting the estimates for the resulting bias when it is present. Supplementary materials accompanying this paper appear online.
期刊介绍:
The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.