On the Invariant and Anti-Invariant Cohomologies of Hypercomplex Manifolds

Pub Date : 2023-11-17 DOI:10.1007/s00031-023-09828-x
Mehdi Lejmi, Nicoletta Tardini
{"title":"On the Invariant and Anti-Invariant Cohomologies of Hypercomplex Manifolds","authors":"Mehdi Lejmi, Nicoletta Tardini","doi":"10.1007/s00031-023-09828-x","DOIUrl":null,"url":null,"abstract":"<p>A hypercomplex structure (<i>I</i>, <i>J</i>, <i>K</i>) on a manifold <i>M</i> is said to be <span>\\(C^\\infty \\)</span>-pure-and-full if the Dolbeault cohomology <span>\\(H^{2,0}_{\\partial }(M,I)\\)</span> is the direct sum of two natural subgroups called the <span>\\(\\overline{J}\\)</span>-invariant and the <span>\\(\\overline{J}\\)</span>-anti-invariant subgroups. We prove that a compact hypercomplex manifold that satisfies the quaternionic version of the <span>\\(dd^c\\)</span>-Lemma is <span>\\(C^\\infty \\)</span>-pure-and-full. Moreover, we study the dimensions of the <span>\\(\\overline{J}\\)</span>-invariant and the <span>\\(\\overline{J}\\)</span>-anti-invariant subgroups, together with their analogue in the Bott-Chern cohomology. For instance, in real dimension 8, we characterize the existence of hyperkähler with torsion metrics in terms of the dimension of the <span>\\(\\overline{J}\\)</span>-invariant subgroup. We also study the existence of special hypercomplex structures on almost abelian solvmanifolds.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-023-09828-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A hypercomplex structure (IJK) on a manifold M is said to be \(C^\infty \)-pure-and-full if the Dolbeault cohomology \(H^{2,0}_{\partial }(M,I)\) is the direct sum of two natural subgroups called the \(\overline{J}\)-invariant and the \(\overline{J}\)-anti-invariant subgroups. We prove that a compact hypercomplex manifold that satisfies the quaternionic version of the \(dd^c\)-Lemma is \(C^\infty \)-pure-and-full. Moreover, we study the dimensions of the \(\overline{J}\)-invariant and the \(\overline{J}\)-anti-invariant subgroups, together with their analogue in the Bott-Chern cohomology. For instance, in real dimension 8, we characterize the existence of hyperkähler with torsion metrics in terms of the dimension of the \(\overline{J}\)-invariant subgroup. We also study the existence of special hypercomplex structures on almost abelian solvmanifolds.

分享
查看原文
关于超复流形的不变与反不变上同调
如果Dolbeault上同调\(H^{2,0}_{\partial }(M,I)\)是称为\(\overline{J}\) -不变子群和\(\overline{J}\) -反不变子群的两个自然子群的直接和,则流形M上的超复结构(I, J, K)被称为\(C^\infty \) -纯满结构。证明了满足\(dd^c\) -引理四元数形式的紧超复流形是\(C^\infty \) -纯满的。此外,我们还研究了\(\overline{J}\) -不变子群和\(\overline{J}\) -反不变子群的维数,以及它们在bot - chern上同调中的类似情形。例如,在实维8中,我们用\(\overline{J}\)不变子群的维数来表征具有扭转度量的hyperkähler的存在性。研究了概阿贝尔解流形上特殊超复结构的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信