Floral nectar: Fifty years of new ecological perspectives beyond pollinator reward

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Marta Barberis , Massimo Nepi , Marta Galloni
{"title":"Floral nectar: Fifty years of new ecological perspectives beyond pollinator reward","authors":"Marta Barberis ,&nbsp;Massimo Nepi ,&nbsp;Marta Galloni","doi":"10.1016/j.ppees.2023.125764","DOIUrl":null,"url":null,"abstract":"<div><p>Floral nectar is central to ecology, since it mediates interactions with pollinators, flower-visiting antagonists and microbes through its chemical composition. Here we review how historical assumptions about its ecological meaning were first challenged, then modified and expanded since the discovery of secondary metabolites in nectar. We then explore the origin of specific neuroactive nectar compounds known to act as important insect neurotransmitters, and how advances in the field of bee cognition and plant-microbe-animal interactions challenge such historical views. As all actors involved in the latter interactions are under simultaneous reciprocal selective pressures, their coexistence is characterized by conflicts and trade-offs, the evolutionary interpretation of which suggests exciting new perspectives in one of the longest studied aspects of plant-pollinator interactions.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1433831923000483/pdfft?md5=bd34dd999f00099695285d2af5846357&pid=1-s2.0-S1433831923000483-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1433831923000483","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Floral nectar is central to ecology, since it mediates interactions with pollinators, flower-visiting antagonists and microbes through its chemical composition. Here we review how historical assumptions about its ecological meaning were first challenged, then modified and expanded since the discovery of secondary metabolites in nectar. We then explore the origin of specific neuroactive nectar compounds known to act as important insect neurotransmitters, and how advances in the field of bee cognition and plant-microbe-animal interactions challenge such historical views. As all actors involved in the latter interactions are under simultaneous reciprocal selective pressures, their coexistence is characterized by conflicts and trade-offs, the evolutionary interpretation of which suggests exciting new perspectives in one of the longest studied aspects of plant-pollinator interactions.

Abstract Image

花蜜:五十年来超越传粉者奖励的新生态视角
花蜜是生态学的核心,因为它通过其化学成分介导与传粉者、访花拮抗物和微生物的相互作用。在这里,我们回顾了历史上关于其生态意义的假设是如何被挑战的,然后修改和扩展,因为在花蜜中发现了次生代谢物。然后,我们探索了已知作为重要昆虫神经递质的特定神经活性花蜜化合物的起源,以及蜜蜂认知和植物-微生物-动物相互作用领域的进展如何挑战这些历史观点。由于参与后一种相互作用的所有参与者同时处于相互的选择压力下,它们的共存以冲突和权衡为特征,这一进化解释为植物-传粉者相互作用的一个研究时间最长的方面提供了令人兴奋的新视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信