{"title":"On random irregular subgraphs","authors":"Jacob Fox, Sammy Luo, Huy Tuan Pham","doi":"10.1002/rsa.21204","DOIUrl":null,"url":null,"abstract":"Let <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0001\" display=\"inline\" location=\"graphic/rsa21204-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> be a <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0002\" display=\"inline\" location=\"graphic/rsa21204-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>d</mi>\n</mrow>\n$$ d $$</annotation>\n</semantics></math>-regular graph on <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0003\" display=\"inline\" location=\"graphic/rsa21204-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>n</mi>\n</mrow>\n$$ n $$</annotation>\n</semantics></math> vertices. Frieze, Gould, Karoński, and Pfender began the study of the following random spanning subgraph model <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0004\" display=\"inline\" location=\"graphic/rsa21204-math-0004.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>H</mi>\n<mo>=</mo>\n<mi>H</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>G</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ H=H(G) $$</annotation>\n</semantics></math>. Assign independently to each vertex <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0005\" display=\"inline\" location=\"graphic/rsa21204-math-0005.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>v</mi>\n</mrow>\n$$ v $$</annotation>\n</semantics></math> of <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0006\" display=\"inline\" location=\"graphic/rsa21204-math-0006.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> a uniform random number <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0007\" display=\"inline\" location=\"graphic/rsa21204-math-0007.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>x</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>v</mi>\n<mo stretchy=\"false\">)</mo>\n<mo>∈</mo>\n<mo stretchy=\"false\">[</mo>\n<mn>0</mn>\n<mo>,</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">]</mo>\n</mrow>\n$$ x(v)\\in \\left[0,1\\right] $$</annotation>\n</semantics></math>, and an edge <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0008\" display=\"inline\" location=\"graphic/rsa21204-math-0008.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mi>u</mi>\n<mo>,</mo>\n<mi>v</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ \\left(u,v\\right) $$</annotation>\n</semantics></math> of <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0009\" display=\"inline\" location=\"graphic/rsa21204-math-0009.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>G</mi>\n</mrow>\n$$ G $$</annotation>\n</semantics></math> is an edge of <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0010\" display=\"inline\" location=\"graphic/rsa21204-math-0010.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>H</mi>\n</mrow>\n$$ H $$</annotation>\n</semantics></math> if and only if <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0011\" display=\"inline\" location=\"graphic/rsa21204-math-0011.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>x</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>u</mi>\n<mo stretchy=\"false\">)</mo>\n<mo>+</mo>\n<mi>x</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>v</mi>\n<mo stretchy=\"false\">)</mo>\n<mo>≥</mo>\n<mn>1</mn>\n</mrow>\n$$ x(u)+x(v)\\ge 1 $$</annotation>\n</semantics></math>. Addressing a problem of Alon and Wei, we prove that if <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0012\" display=\"inline\" location=\"graphic/rsa21204-math-0012.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>d</mi>\n<mo>=</mo>\n<mi>o</mi>\n<mo stretchy=\"false\">(</mo>\n<mi>n</mi>\n<mo stretchy=\"false\">/</mo>\n<msup>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mi>log</mi>\n<mi>n</mi>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n<mrow>\n<mn>12</mn>\n</mrow>\n</msup>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ d=o\\left(n/{\\left(\\log n\\right)}^{12}\\right) $$</annotation>\n</semantics></math>, then with high probability, for each nonnegative integer <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0013\" display=\"inline\" location=\"graphic/rsa21204-math-0013.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>k</mi>\n<mo>≤</mo>\n<mi>d</mi>\n</mrow>\n$$ k\\le d $$</annotation>\n</semantics></math>, there are <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0014\" display=\"inline\" location=\"graphic/rsa21204-math-0014.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mn>1</mn>\n<mo>+</mo>\n<mi>o</mi>\n<mo stretchy=\"false\">(</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">)</mo>\n<mo stretchy=\"false\">)</mo>\n<mi>n</mi>\n<mo stretchy=\"false\">/</mo>\n<mo stretchy=\"false\">(</mo>\n<mi>d</mi>\n<mo>+</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ \\left(1+o(1)\\right)n/\\left(d+1\\right) $$</annotation>\n</semantics></math> vertices of degree <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0015\" display=\"inline\" location=\"graphic/rsa21204-math-0015.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>k</mi>\n</mrow>\n$$ k $$</annotation>\n</semantics></math> in <math altimg=\"urn:x-wiley:rsa:media:rsa21204:rsa21204-math-0016\" display=\"inline\" location=\"graphic/rsa21204-math-0016.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>H</mi>\n</mrow>\n$$ H $$</annotation>\n</semantics></math>.","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"276 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a -regular graph on vertices. Frieze, Gould, Karoński, and Pfender began the study of the following random spanning subgraph model . Assign independently to each vertex of a uniform random number , and an edge of is an edge of if and only if . Addressing a problem of Alon and Wei, we prove that if , then with high probability, for each nonnegative integer , there are vertices of degree in .